9 research outputs found

    Finishing the euchromatic sequence of the human genome

    Get PDF
    The sequence of the human genome encodes the genetic instructions for human physiology, as well as rich information about human evolution. In 2001, the International Human Genome Sequencing Consortium reported a draft sequence of the euchromatic portion of the human genome. Since then, the international collaboration has worked to convert this draft into a genome sequence with high accuracy and nearly complete coverage. Here, we report the result of this finishing process. The current genome sequence (Build 35) contains 2.85 billion nucleotides interrupted by only 341 gaps. It covers ∼99% of the euchromatic genome and is accurate to an error rate of ∼1 event per 100,000 bases. Many of the remaining euchromatic gaps are associated with segmental duplications and will require focused work with new methods. The near-complete sequence, the first for a vertebrate, greatly improves the precision of biological analyses of the human genome including studies of gene number, birth and death. Notably, the human enome seems to encode only 20,000-25,000 protein-coding genes. The genome sequence reported here should serve as a firm foundation for biomedical research in the decades ahead

    Fondaparinux cross-reactivity in heparin-induced thrombocytopenia successfully treated with high-dose intravenous immunoglobulin and rivaroxaban

    No full text
    HIT, a prothrombotic disorder caused by heparin-dependent antibodies, is often treated with fondaparinux, usually with good outcomes. A 70-year-old female developed severe HIT (platelet count, 25 × 109/L) post-glioblastoma resection during heparin thromboprophylaxis, complicated by disseminated intravascular coagulation (DIC) and symptomatic lower-limb deep-vein thrombosis (DVT). Despite therapeutic-dose fondaparinux, thrombocytopenia/hypofibrinogenemia persisted, with new symptomatic catheter-associated upper-extremity DVT. This clinical picture could be explained by autoimmune HIT (aHIT) refractory to fondaparinux or by fondaparinux cross-reactivity, so high-dose intravenous immunoglobulin (IVIG) was given (to treat possible aHIT) and fondaparinux switched to rivaroxaban, with subsequent clinical recovery. In vitro studies revealed strong fondaparinux cross-reactivity, without aHIT antibodies. Moreover, the patient’s serotonin-release assay became negative post-IVIG, suggesting in-vivo inhibition of HIT antibody-induced platelet activation. Our case illustrates fondaparinux cross-reactivity in HIT manifesting as persisting thrombocytopenia, new thrombosis, and DIC, with successful rivaroxaban treatment, adding to emerging data that oral factor Xa inhibitors are efficacious for treating HIT

    Apixaban for treatment of confirmed heparin-induced thrombocytopenia: a case report and review of literature

    No full text
    Abstract Background Heparin-induced thrombocytopenia (HIT) is a life and limb-threatening condition caused by the binding of platelet-activating antibodies (IgG) to multimolecular platelet factor 4 (PF4)/heparin complexes because of heparin exposure. The by-product of this interaction is thrombin formation which substantially increases the risk of venous and/or arterial thromboembolism. Currently, only one anticoagulant, argatroban, is United States Food and Drug Administration-approved for management of HIT; however, this agent is expensive and can only be given by intravenous infusion. Recently, several retrospective case-series, case reports, and one prospective study suggest that direct oral anticoagulants (DOACs) are also efficacious for treating HIT. We further review the literature regarding current diagnosis and clinical management of HIT. Case presentation A 66-year-old male patient developed HIT beginning on day 5 post-cardiovascular surgery; the platelet count nadir on day 10 measured 16 × 109/L. Both the PF4-dependent ELISA and Serotonin-release assay were strongly positive. Despite initial anticoagulation with argatroban (day 6), the patient developed symptomatic Doppler ultrasound-documented bilateral lower extremity deep vein thrombosis on day 14 post-surgery. The patient was transitioned to the DOAC, apixaban, while still thrombocytopenic (platelet count 108) and discharged to home, with platelet count recovery and no further thrombosis at 3-month follow-up. Conclusions We report a patient with serologically confirmed HIT who developed symptomatic bilateral lower limb deep vein thrombosis despite anticoagulation with argatroban. The patient was switched to oral apixaban and made a complete recovery. Our patient case adds to the emerging literature suggesting that DOAC therapy is safe and efficacious for management of proven HIT

    Anti–platelet factor 4/heparin antibodies in orthopedic surgery patients receiving antithrombotic prophylaxis with fondaparinux or enoxaparin

    No full text
    Heparin-induced thrombocytopenia (HIT) is caused by platelet-activating IgG antibodies that recognize platelet factor 4 (PF4) bound to heparin. Immunogenicity of heparins differs in that unfractionated heparin (UFH) induces more anti–PF4/heparin antibodies than low-molecular-weight heparin (LMWH) and UFH also causes more HIT. Fondaparinux, a synthetic anticoagulant modeled after the antithrombin-binding pentasaccharide, is believed to be nonimmunogenic. We tested 2726 patients for anti–PF4/heparin antibodies after they were randomized to receive antithrombotic prophylaxis with fondaparinux or LMWH (enoxaparin) following hip or knee surgery. We also evaluated in vitro cross-reactivity of the IgG antibodies generated against PF4 in the presence of UFH, LMWH, danaparoid, or fondaparinux. We found that anti–PF4/heparin antibodies were generated at similar frequencies in patients treated with fondaparinux or enoxaparin. Although antibodies reacted equally well in vitro against PF4/UFH and PF4/LMWH, and sometimes weakly against PF4/danaparoid, none reacted against PF4/fondaparinux, including even those sera obtained from patients who formed antibodies during fondaparinux treatment. At high concentrations, however, fondaparinux inhibited binding of HIT antibodies to PF4/polysaccharide, indicating that PF4/fondaparinux interactions occur. No patient developed HIT. We conclude that despite similar immunogenicity of fondaparinux and LMWH, PF4/fondaparinux, but not PF4/LMWH, is recognized poorly by the antibodies generated, suggesting that the risk of HIT with fondaparinux likely is very low

    Annual Selected Bibliography

    No full text
    corecore