21 research outputs found

    Seasonality Role on the Phenolics from Cultivated Baccharis dracunculifolia

    Get PDF
    Baccharis dracunculifolia is the source of Brazilian green propolis (BGP). Considering the broad spectrum of biological activities attributed to green proplis, B. dracunculifolia has a great potential for the development of new cosmetic and pharmaceutical products. In this work, the cultivation of 10 different populations of native B. dracunculifolia had been undertaken aiming to determine the role of seasonality on its phenolic compounds. For this purpose, fruits of this plant were collected from populations of 10 different regions, and 100 individuals of each population were cultivated in an experimental area of 1800 m2. With respect to cultivation, the yields of dry plant, essential oil and crude extract were measured monthly resulting in mean values of 399 ± 80 g, 0.6 ± 0.1% and 20 ± 4%, respectively. The HPLC analysis allowed detecting seven phenolic compounds: caffeic acid, ferulic acid, aromadendrin-4′-methyl ether (AME), isosakuranetin, artepillin C, baccharin and 2-dimethyl-6-carboxyethenyl-2H-1-benzopyran acid, which were the major ones throughout the 1-year monthly analysis. Caffeic acid was detected in all cultivated populations with mean of 4.0%. AME displayed the wide variation in relation to other compounds showing means values of 0.65 ± 0.13% at last quarter. Isosakuranetin and artepillin C showed increasing concentrations with values between 0% and 1.4% and 0% and 1.09%, respectively. The obtained results allow suggesting that the best time for harvesting this plant, in order to obtain good qualitative and quantitative results for these phenolic compounds, is between December and April

    Pervasive gaps in Amazonian ecological research

    Get PDF
    Biodiversity loss is one of the main challenges of our time,1,2 and attempts to address it require a clear un derstanding of how ecological communities respond to environmental change across time and space.3,4 While the increasing availability of global databases on ecological communities has advanced our knowledge of biodiversity sensitivity to environmental changes,5–7 vast areas of the tropics remain understudied.8–11 In the American tropics, Amazonia stands out as the world’s most diverse rainforest and the primary source of Neotropical biodiversity,12 but it remains among the least known forests in America and is often underrepre sented in biodiversity databases.13–15 To worsen this situation, human-induced modifications16,17 may elim inate pieces of the Amazon’s biodiversity puzzle before we can use them to understand how ecological com munities are responding. To increase generalization and applicability of biodiversity knowledge,18,19 it is thus crucial to reduce biases in ecological research, particularly in regions projected to face the most pronounced environmental changes. We integrate ecological community metadata of 7,694 sampling sites for multiple or ganism groups in a machine learning model framework to map the research probability across the Brazilian Amazonia, while identifying the region’s vulnerability to environmental change. 15%–18% of the most ne glected areas in ecological research are expected to experience severe climate or land use changes by 2050. This means that unless we take immediate action, we will not be able to establish their current status, much less monitor how it is changing and what is being lostinfo:eu-repo/semantics/publishedVersio

    Pervasive gaps in Amazonian ecological research

    Get PDF

    Public health and tropical modernity: the combat against sleeping sickness in Portuguese Guinea, 1945-1974

    Full text link

    Pervasive gaps in Amazonian ecological research

    Get PDF
    Biodiversity loss is one of the main challenges of our time,1,2 and attempts to address it require a clear understanding of how ecological communities respond to environmental change across time and space.3,4 While the increasing availability of global databases on ecological communities has advanced our knowledge of biodiversity sensitivity to environmental changes,5,6,7 vast areas of the tropics remain understudied.8,9,10,11 In the American tropics, Amazonia stands out as the world's most diverse rainforest and the primary source of Neotropical biodiversity,12 but it remains among the least known forests in America and is often underrepresented in biodiversity databases.13,14,15 To worsen this situation, human-induced modifications16,17 may eliminate pieces of the Amazon's biodiversity puzzle before we can use them to understand how ecological communities are responding. To increase generalization and applicability of biodiversity knowledge,18,19 it is thus crucial to reduce biases in ecological research, particularly in regions projected to face the most pronounced environmental changes. We integrate ecological community metadata of 7,694 sampling sites for multiple organism groups in a machine learning model framework to map the research probability across the Brazilian Amazonia, while identifying the region's vulnerability to environmental change. 15%–18% of the most neglected areas in ecological research are expected to experience severe climate or land use changes by 2050. This means that unless we take immediate action, we will not be able to establish their current status, much less monitor how it is changing and what is being lost

    Desenvolvimento de um sistema de controlo de uma célula flexível de produção

    No full text
    Dissertação apresentada para obtenção do grau de Mestre em Engenharia Electrotécnia e de Computadores, na Faculdade de Engenharia da Universidade do Porto, sob a orientação do Prof. Doutor José Carlos Diogo Marques dos Santo

    Corrigendum to Hippocampus and dentate gyrus of the Cebus monkey: architectonic and stereological study

    No full text
    Universidade Federal do Pará. Instituto de Ciências Biológicas. Laboratory of Investigations in Neurodegeneration and Infection. Belém, PA, Brasil.Universidade Federal do Pará. Instituto de Ciências Biológicas. Laboratory of Investigations in Neurodegeneration and Infection. Belém, PA, Brasil.Universidade Federal do Pará. Instituto de Ciências Biológicas. Laboratory of Investigations in Neurodegeneration and Infection. Belém, PA, Brasil.Universidade Federal do Pará. Instituto de Ciências Biológicas. Laboratory of Investigations in Neurodegeneration and Infection. Belém, PA, Brasil.Ministério da Saúde. Secretaria de Vigilância em Saúde. Instituto Evandro Chagas. Ananindeua, PA, Brasil / Universidade Federal do Pará. Instituto de Ciências Biológicas. Laboratório de Neuroanatomia Funcional. Belém, PA, Brasil.Ministério da Saúde. Secretaria de Vigilância em Saúde. Instituto Evandro Chagas. Ananindeua, PA, Brasil / Universidade Federal do Pará. Instituto de Ciências Biológicas. Laboratório de Neuroanatomia Funcional. Belém, PA, Brasil.Ministério da Saúde. Secretaria de Vigilância em Saúde. Instituto Evandro Chagas. Ananindeua, PA, Brasil / Universidade Federal do Pará. Instituto de Ciências Biológicas. Laboratório de Neuroanatomia Funcional. Belém, PA, Brasil.Ministério da Saúde. Secretaria de Vigilância em Saúde. Instituto Evandro Chagas. Ananindeua, PA, Brasil / Universidade Federal do Pará. Instituto de Ciências Biológicas. Laboratório de Neuroanatomia Funcional. Belém, PA, Brasil.Ministério da Saúde. Secretaria de Vigilância em Saúde. Instituto Evandro Chagas. Ananindeua, PA, Brasil / Universidade Federal do Pará. Instituto de Ciências Biológicas. Laboratório de Neuroanatomia Funcional. Belém, PA, Brasil.Ministério da Saúde. Secretaria de Vigilância em Saúde. Instituto Evandro Chagas. Ananindeua, PA, Brasil / Universidade Federal do Pará. Instituto de Ciências Biológicas. Laboratório de Neuroanatomia Funcional. Belém, PA, Brasil.Universidade Federal do Pará. Instituto de Ciências Biológicas. Laboratory of Investigations in Neurodegeneration and Infection. Belém, PA, Brasil.Universidade Federal do Pará. Instituto de Ciências Biológicas. Laboratory of Investigations in Neurodegeneration and Infection. Belém, PA, Brasil.Universidade Federal do Pará. Instituto de Ciências Biológicas. Laboratory of Investigations in Neurodegeneration and Infection. Belém, PA, Brasil.Universidade Federal do Pará. Instituto de Ciências Biológicas. Laboratory of Investigations in Neurodegeneration and Infection. Belém, PA, Brasil.Universidade Federal do Pará. Instituto de Ciências Biológicas. Laboratory of Investigations in Neurodegeneration and Infection. Belém, PA, Brasil.Ministério da Saúde. Secretaria de Vigilância em Saúde. Instituto Evandro Chagas. Ananindeua, PA, Brasil / Universidade Federal do Pará. Instituto de Ciências Biológicas. Laboratório de Neuroanatomia Funcional. Belém, PA, Brasil.Universidade Federal do Pará. Instituto de Ciências Biológicas. Laboratory of Investigations in Neurodegeneration and Infection. Belém, PA, Brasil

    Hippocampus and dentate gyrus of the Cebus monkey: architectonic and stereological study

    No full text
    Universidade Federal do Pará. Instituto de Ciências Biológicas. Laboratory of Investigations in Neurodegeneration and Infection. Belém, PA, Brasil.Universidade Federal do Pará. Instituto de Ciências Biológicas. Laboratory of Investigations in Neurodegeneration and Infection. Belém, PA, Brasil.Universidade Federal do Pará. Instituto de Ciências Biológicas. Laboratory of Investigations in Neurodegeneration and Infection. Belém, PA, Brasil.Universidade Federal do Pará. Instituto de Ciências Biológicas. Laboratory of Investigations in Neurodegeneration and Infection. Belém, PA, Brasil.Ministério da Saúde. Secretaria de Vigilância em Saúde. Instituto Evandro Chagas. Ananindeua, PA, Brasil / Universidade Federal do Pará. Instituto de Ciências Biológicas. Laboratório de Neuroanatomia Funcional. Belém, PA, Brasil.Ministério da Saúde. Secretaria de Vigilância em Saúde. Instituto Evandro Chagas. Ananindeua, PA, Brasil / Universidade Federal do Pará. Instituto de Ciências Biológicas. Laboratório de Neuroanatomia Funcional. Belém, PA, Brasil.Ministério da Saúde. Secretaria de Vigilância em Saúde. Instituto Evandro Chagas. Ananindeua, PA, Brasil / Universidade Federal do Pará. Instituto de Ciências Biológicas. Laboratório de Neuroanatomia Funcional. Belém, PA, Brasil.Ministério da Saúde. Secretaria de Vigilância em Saúde. Instituto Evandro Chagas. Ananindeua, PA, Brasil / Universidade Federal do Pará. Instituto de Ciências Biológicas. Laboratório de Neuroanatomia Funcional. Belém, PA, Brasil.Ministério da Saúde. Secretaria de Vigilância em Saúde. Instituto Evandro Chagas. Ananindeua, PA, Brasil / Universidade Federal do Pará. Instituto de Ciências Biológicas. Laboratório de Neuroanatomia Funcional. Belém, PA, Brasil.Ministério da Saúde. Secretaria de Vigilância em Saúde. Instituto Evandro Chagas. Ananindeua, PA, Brasil / Universidade Federal do Pará. Instituto de Ciências Biológicas. Laboratório de Neuroanatomia Funcional. Belém, PA, Brasil.Universidade Federal do Pará. Instituto de Ciências Biológicas. Laboratory of Investigations in Neurodegeneration and Infection. Belém, PA, Brasil.Universidade Federal do Pará. Instituto de Ciências Biológicas. Laboratory of Investigations in Neurodegeneration and Infection. Belém, PA, Brasil.Universidade Federal do Pará. Instituto de Ciências Biológicas. Laboratory of Investigations in Neurodegeneration and Infection. Belém, PA, Brasil.Universidade Federal do Pará. Instituto de Ciências Biológicas. Laboratory of Investigations in Neurodegeneration and Infection. Belém, PA, Brasil.Universidade Federal do Pará. Instituto de Ciências Biológicas. Laboratory of Investigations in Neurodegeneration and Infection. Belém, PA, Brasil.Ministério da Saúde. Secretaria de Vigilância em Saúde. Instituto Evandro Chagas. Ananindeua, PA, Brasil / Universidade Federal do Pará. Instituto de Ciências Biológicas. Laboratório de Neuroanatomia Funcional. Belém, PA, Brasil.Universidade Federal do Pará. Instituto de Ciências Biológicas. Laboratory of Investigations in Neurodegeneration and Infection. Belém, PA, Brasil.Behavioral, electrophysiological, and anatomical assays of non-human primates have provided substantial evidence that the hippocampus and dentate gyrus are essential for memory consolidation. However, a single anatomical and stereological investigation of these regions has been done in New World primates to complement those assays. The aim of the present study was to describe the cyto-, myelo-, and histochemical architecture of the hippocampus and dentate gyrus, and to use the optical fractionator method to estimate the number of neurons in the hippocampal pyramidal and granular neurons in the dentate gyrus of the Cebus monkey. NeuN immunolabeling, lectin histochemical staining with Wisteria floribunda agglutinin (WFA), enzyme-histochemical detection of NADPH-diaphorase activity and Gallyas silver staining were used to define the layers and limits of the hippocampal fields and dentate gyrus. A comparative analysis of capuchin (Cebus apella) and Rhesus (Macaca mulatta) monkeys revealed similar structural organization of these regions but significant differences in the regional distribution of neurons. C. apella were found to have 1.3 times fewer pyramidal and 3.5 times fewer granular neurons than M. mulatta. Taken together the architectonic and stereological data of the present study suggest that hippocampal and dentate gyrus neural networks in the C. apella and M. mulatta may contribute to hippocampal-dentate gyrus-dependent tasks in different proportions
    corecore