12 research outputs found

    Switchable photothermal conversion efficiency for reprogrammable actuation

    No full text
    Abstract Reprogrammable soft matter brings flexibility to soft robots so that they can display various motions, which is flourishing in soft robotics. However, the reprogramming of photoresponsive materials used in soft robots is time-consuming using existing methods. In this study, we promote a strategy for rapid reprogramming via switchable photothermal conversion efficiency (PCE). The liquid crystalline elastomers doped with semiconductor bismuth compounds (Bi-LCE) used in this work exhibited large photothermal actuation with over 35% shrinkage in 5 s at high PCE state, which demonstrated little deformation at low PCE state. Furthermore, the material was capable of being reprogrammed up to 10 times, with only 20 min required for one PCE reversible switch. Based on this switchable PCE effect, the same Bi-LCE film displayed various shape changes through different programmable pattern. Additionally, a reprogrammable hollow tube made of PCE reprogrammable materials could tune the diameter, cross-section configuration, and surface morphology, which was crucial for microfluidics field. Reprogrammable materials provide endless possibilities for reusability and sustainability in robotics

    Recent advances and prospects of persistent luminescent materials as inner secondary self-luminous light source for photocatalytic applications

    No full text
    International audienceNowadays, materials with persistent luminescence (MPLs) have attracted growing attention in the photocatalytic field because they can act as an inner light source to irradiate the photocatalytic materials (PCMs) and sustain their photocatalytic activities in the absence of the external irradiation source. The motivation of the present work is to provide a review of the MPL@PCM composites that are of interest for both photocatalytic and lighting fields. In terms of the unique luminescence of MPLs and the principal optical properties of PCMs, the review is organized as follows: first, we categorize and discuss a number of rare-earth (RE)/non-RE-doped MPLs and bulk MPLs, along with their emission/persistent ranges and potentially-coupled PCM counterparts. Then, we present and discuss the intrinsic nature of the photocatalytic properties and the working principles of the MPLs that have been coupled with the PCMs. In the 4th section, we summarize the principal synthesis strategies that are reported for the MPL@PCM composites. At last, by taking advantages of some typical reported works, we exhibit the photocatalytic applications of the MPL@PCM composites, and give a summary, perspectives, potential challenges and future development directions to this review. With the profound impact of the persistent luminescence, we believe that this review will be not only of particular interest to the scientists in the lighting field, but can also attract those with backgrounds in the fields of the environmental science, materials and physics, chemistry, energy fuels, and their coupling subdivisions to jointly address some of the major environmental issues like degradation of organic waste, removal of gas-phased materials, etc
    corecore