91 research outputs found

    MiR26-5p inhibits pathological pulmonary microvascular angiogenesis via down-regulating WNT5A

    Get PDF
    Objective(s): Pathological micro angiogenesis is a key pathogenic factor in pulmonary diseases such as pulmonary hypertension and hepatopulmonary syndrome. More and more pieces of evidence show that excessive proliferation of pulmonary microvascular endothelial cells is the key event of pathological micro angiogenesis. The purpose of this research is to reveal the mechanism of miR26-5p regulating pulmonary microvascular hyperproliferation.Materials and Methods: Hepatopulmonary syndrome rat model was made by common bile duct ligation. HE and IHC staining were used for analysis of the pathology of the rat. CCK8, transwell, and wound healing assay were used to assess miR26-5p or target gene WNT5A functioned toward PMVECs. microRNA specific mimics and inhibitors were used for up/down-regulated miR26-5p expression in PMVECs. Recombinant lentivirus was used for overexpression/knockdown WNT5A expression in PMVECs. And the regulation relationship of miR26-5p and WNT5A was analyzed by dual-luciferase reporter assay.Results: qPCR showed that miR26-5p was significantly down-regulated in the course of HPS disease. Bioinformatics data showed that WNT5A was one of the potential key target genes of miR26-5p. Immunohistochemistry and qPCR analysis showed that WNT5A was largely expressed in pulmonary microvascular endothelial cells, in addition, this molecule was significantly up-regulated with the progression of the disease. Furthermore, dual luciferase reporter assay showed that miR26-5p could bind to WNT5A 3 ‘UTR region to inhibit WNT5A synthesis.Conclusion: The results suggested MiR26-5p negatively regulated PMVECs proliferation and migration by WNT5A expression. Overexpression of miR26-5p may be a potentially beneficial strategy for HPS therapy

    The efficacy and safety of sacubitril/valsartan compared with ACEI/ARB in the treatment of heart failure following acute myocardial infarction: a systematic review and meta-analysis of randomized controlled trials

    Get PDF
    Purpose: To systematically assess the efficacy and safety of sacubitril/valsartan (SV) by comparison with angiotensin-converting enzyme inhibitors (ACEIs) or angiotensin receptor blockers (ARBs) for the treatment of heart failure caused by acute myocardial infarction (HF-AMI) based on current randomized controlled trials (RCTs).Methods: Several electronic databases were searched up to 27 May 2023. Primary endpoints were the efficacy including the left ventricular ejection fraction (LVEF), left ventricular end-diastolic diameter (LVEDD), N-terminal pro-B type natriuretic peptide (NT-proBNP) and 6-min walk test (6MWT) and secondary endpoints were the safety including the major adverse cardiovascular event (MACE) and adverse reaction (AE).Results: A total of 14 RCTs were included and all patients were from China. Among included 1,991 patients, 997 patients received SVs and 994 patients received ACEIs/ARBs. The pooled results demonstrated that patients in the SV group showed significantly better efficacy representing as increased LVEF [weighted mean difference (WMD): 4.43%, 95% confidence interval (CI): 2.84%–6.02%, p < 0.001] and 6MWT (WMD: 30.84 m, 95% CI: 25.65 m–36.03 m, p < 0.001) and decreased LVEDD (WMD: −3.24 mm, 95% CI: −4.96 mm ∼ -1.52 mm, p < 0.001) and NT-proBNP (WMD: −188.12 pg/mL, 95% CI: −246.75 pg/mL ∼ 129.49 pg/mL, p < 0.001), which was also verified by subgroup analysis based on the history of percutaneous coronary intervention (PCI). Besides, the SV group showed significantly lower incidence rate of MACE [relative risk (RR): 0.60, 95% CI: 0.47–0.75, p < 0.001] and patients receiving SVs in the non-PCI group also showed lower incidence of AE (RR: 0.38, 95% CI: 0.20–0.71, p = 0.002).Conclusion: For the treatment of HF-AMI, SV is more effective and safer than ACEI/ARB based on current evidence, but more high-quality RCTs are still needed to verify above findings

    Understanding the metabolic fate and assessing the biosafety of MnO nanoparticles by metabonomic analysis

    Get PDF
    National Natural Science Foundation of China [20605025, 81272581]; Fundamental Research Funds for the Central Universities [2011121046]Recently, some types of MnO nanoparticle (Mn-NP) with favorable imaging capacity have been developed to improve the biocompatible profile of the existing Mn-based MRI contrast agent Mn-DPDP; however, the overall bio-effects and potential toxicity remain largely unknown. In this study, H-1 NMR-based metabolic profiling, integrated with traditional biochemical analysis and histopathological examinations, was used to investigate the absorption, distribution, metabolism, excretion and toxicity of Mn-NPs as candidates for MRI contrast agent. The metabolic responses in biofluids (plasma and urine) and tissues (liver, spleen, kidney, lung and brain) from rats could be divided into four classes following Mn-NP administration: Mn biodistribution-dependent, time-dependent, dose-dependent and complicated metabolic variations. The variations of these metabolites involved in lipid, energy, amino acid and other nutrient metabolism, which disclosed the metabolic fate and biological effects of Mn-NPs in rats. The changes of metabolic profile implied that the disturbance and impairment of biological functions induced by Mn-NP exposure were correlated with the particle size and the surface chemistry of nanoparticles. Integration of metabonomic technology with traditional methods provides a promising tool to understand the toxicological behavior of biomedical nanomaterials and will result in informed decision-making during drug development

    A novel strategy for power sources management in connected plug-in hybrid electric vehicles based on mobile edge computation framework

    Get PDF
    This paper proposes a novel control framework and the corresponding strategy for power sources management in connected plug-in hybrid electric vehicles (cPHEVs). A mobile edge computation (MEC) based control framework is developed first, evolving the conventional on-board vehicle control unit (VCU) into the hierarchically asynchronous controller that is partly located in cloud. Elaborately contrastive analysis on the performance of processing capacity, communication frequency and communication delay manifests dramatic potential of the proposed framework in sustaining development of the cooperative control strategy for cPHEVs. On the basis of MEC based control framework, a specific cooperative strategy is constructed. The novel strategy accomplishes energy flow management between different power sources with incorporation of the active energy consumption plan and adaptive energy consumption management. The method to generate the reference battery state-of-charge (SOC) trajectories in energy consumption plan stage is emphatically investigated, fast outputting reference trajectories that are tightly close to results by global optimization methods. The estimation of distribution algorithm (EDA) is employed to output reference control policies under the specific terminal conditions assigned via the machine learning based method. Finally, simulation results highlight that the novel strategy attains superior performance in real-time application that is close to the offline global optimization solutions

    Roadmap on Perovskite Light-Emitting Diodes

    Full text link
    In recent years, the field of metal-halide perovskite emitters has rapidly emerged as a new community in solid-state lighting. Their exceptional optoelectronic properties have contributed to the rapid rise in external quantum efficiencies (EQEs) in perovskite light-emitting diodes (PeLEDs) from <1% (in 2014) to approaching 30% (in 2023) across a wide range of wavelengths. However, several challenges still hinder their commercialization, including the relatively low EQEs of blue/white devices, limited EQEs in large-area devices, poor device stability, as well as the toxicity of the easily accessible lead components and the solvents used in the synthesis and processing of PeLEDs. This roadmap addresses the current and future challenges in PeLEDs across fundamental and applied research areas, by sharing the community's perspectives. This work will provide the field with practical guidelines to advance PeLED development and facilitate more rapid commercialization.Comment: 103 pages, 29 figures. This is the version of the article before peer review or editing, as submitted by an author to Journal of Physics: Photonics. IOP Publishing Ltd is not responsible for any errors or omissions in this version of the manuscript or any version derived from i

    The invasion of tobacco mosaic virus RNA induces endoplasmic reticulum stress-related autophagy in HeLa cells

    Get PDF
    The ability of human cells to defend against viruses originating from distant species has long been ignored. Owing to the pressure of natural evolution and human exploration, some of these viruses may be able to invade human beings. If their ‘fresh’ host had no defences, the viruses could cause a serious pandemic, as seen with HIV, SARS (severe acute respiratory syndrome) and avian influenza virus that originated from chimpanzees, the common palm civet and birds, respectively. It is unknown whether the human immune system could tolerate invasion with a plant virus. To model such an alien virus invasion, we chose TMV (tobacco mosaic virus) and used human epithelial carcinoma cells (HeLa cells) as its ‘fresh’ host. We established a reliable system for transfecting TMV-RNA into HeLa cells and found that TMV-RNA triggered autophagy in HeLa cells as shown by the appearance of autophagic vacuoles, the conversion of LC3-I (light chain protein 3-I) to LC3-II, the up-regulated expression of Beclin1 and the accumulation of TMV protein on autophagosomal membranes. We observed suspected TMV virions in HeLa cells by TEM (transmission electron microscopy). Furthermore, we found that TMV-RNA was translated into CP (coat protein) in the ER (endoplasmic reticulum) and that TMV-positive RNA translocated from the cytoplasm to the nucleolus. Finally, we detected greatly increased expression of GRP78 (78 kDa glucose-regulated protein), a typical marker of ERS (ER stress) and found that the formation of autophagosomes was closely related to the expanded ER membrane. Taken together, our data indicate that HeLa cells used ERS and ERS-related autophagy to defend against TMV-RNA

    CCL28 Induces Mucosal Homing of HIV-1-Specific IgA-Secreting Plasma Cells in Mice Immunized with HIV-1 Virus-Like Particles

    Get PDF
    Mucosae-associated epithelial chemokine (MEC or CCL28) binds to CCR3 and CCR10 and recruits IgA-secreting plasma cells (IgA-ASCs) in the mucosal lamina propria. The ability of this chemokine to enhance migration of IgA-ASCs to mucosal sites was assessed in a mouse immunization model using HIV-1IIIB Virus-like particles (VLPs). Mice receiving either HIV-1IIIB VLPs alone, CCL28 alone, or the irrelevant CCL19 chemokine were used as controls. Results showed a significantly increased CCR3 and CCR10 expression on CD19+ splenocytes of HIV-1IIIB VPL-CCL28-treated mice. HIV-1 Env-specific IFN-γ, IL-4 and IL-5 production, total IgA, anti-Env IgA as well as gastro-intestinal mucosal IgA-secreting plasma cells were also significantly augmented in these mice. Notably, sera and vaginal secretions from HIV-1IIIB VLP-CCL28-treated mice exhibited an enhanced neutralizing activity against both a HIV-1/B-subtype laboratory strain and a heterologous HIV-1/C-subtype primary isolate. These data suggest that CCL28 could be useful in enhancing the IgA immune response that will likely play a pivotal role in prophylactic HIV vaccines

    Peregrine and saker falcon genome sequences provide insights into evolution of a predatory lifestyle

    Get PDF
    As top predators, falcons possess unique morphological, physiological and behavioral adaptations that allow them to be successful hunters: for example, the peregrine is renowned as the world's fastest animal. To examine the evolutionary basis of predatory adaptations, we sequenced the genomes of both the peregrine (Falco peregrinus) and saker falcon (Falco cherrug), and we present parallel, genome-wide evidence for evolutionary innovation and selection for a predatory lifestyle. The genomes, assembled using Illumina deep sequencing with greater than 100-fold coverage, are both approximately 1.2 Gb in length, with transcriptome-assisted prediction of approximately 16,200 genes for both species. Analysis of 8,424 orthologs in both falcons, chicken, zebra finch and turkey identified consistent evidence for genome-wide rapid evolution in these raptors. SNP-based inference showed contrasting recent demographic trajectories for the two falcons, and gene-based analysis highlighted falcon-specific evolutionary novelties for beak development and olfaction and specifically for homeostasis-related genes in the arid environment–adapted saker

    Clinical Characteristics of 26 Human Cases of Highly Pathogenic Avian Influenza A (H5N1) Virus Infection in China

    Get PDF
    BACKGROUND: While human cases of highly pathogenic avian influenza A (H5N1) virus infection continue to increase globally, available clinical data on H5N1 cases are limited. We conducted a retrospective study of 26 confirmed human H5N1 cases identified through surveillance in China from October 2005 through April 2008. METHODOLOGY/PRINCIPAL FINDINGS: Data were collected from hospital medical records of H5N1 cases and analyzed. The median age was 29 years (range 6-62) and 58% were female. Many H5N1 cases reported fever (92%) and cough (58%) at illness onset, and had lower respiratory findings of tachypnea and dyspnea at admission. All cases progressed rapidly to bilateral pneumonia. Clinical complications included acute respiratory distress syndrome (ARDS, 81%), cardiac failure (50%), elevated aminotransaminases (43%), and renal dysfunction (17%). Fatal cases had a lower median nadir platelet count (64.5 x 10(9) cells/L vs 93.0 x 10(9) cells/L, p = 0.02), higher median peak lactic dehydrogenase (LDH) level (1982.5 U/L vs 1230.0 U/L, p = 0.001), higher percentage of ARDS (94% [n = 16] vs 56% [n = 5], p = 0.034) and more frequent cardiac failure (71% [n = 12] vs 11% [n = 1], p = 0.011) than nonfatal cases. A higher proportion of patients who received antiviral drugs survived compared to untreated (67% [8/12] vs 7% [1/14], p = 0.003). CONCLUSIONS/SIGNIFICANCE: The clinical course of Chinese H5N1 cases is characterized by fever and cough initially, with rapid progression to lower respiratory disease. Decreased platelet count, elevated LDH level, ARDS and cardiac failure were associated with fatal outcomes. Clinical management of H5N1 cases should be standardized in China to include early antiviral treatment for suspected H5N1 cases
    corecore