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Abstract: This paper proposes a novel control framework and the corresponding strategy for power sources 

management in connected plug-in hybrid electric vehicles (cPHEVs). A mobile edge computation (MEC) based 

control framework is developed first, evolving the conventional on-board vehicle control unit (VCU) into the 

hierarchically asynchronous controller that is partly located in cloud. Elaborately contrastive analysis on the 

performance of processing capacity, communication frequency and communication delay manifests dramatic 

potential of the proposed framework in sustaining development of the cooperative control strategy for cPHEVs. 

On the basis of MEC based control framework, a specific cooperative strategy is constructed. The novel strategy 

accomplishes energy flow management between different power sources with incorporation of the active energy 

consumption plan and adaptive energy consumption management. The method to generate the reference battery 

state-of-charge (SOC) trajectories in energy consumption plan stage is emphatically investigated, fast outputting 

reference trajectories that are tightly close to results by global optimization methods. The estimation of distribution 

algorithm (EDA) is employed to output reference control policies under the specific terminal conditions assigned 

via the machine learning based method. Finally, simulation results highlight that the novel strategy attains superior 

performance in real-time application that is close to the offline global optimization solutions. 

Key words: Power sources management, mobile edge computation (MEC), estimation of distribution algorithm 

(EDA), machine learning based method, connected plug-in hybrid electric vehicles (cPHEVs). 

I. INTRODUCTION 

A. Background and Motivation  

In recent years, society has witnessed rapid development in economy, culture and technologies. Nonetheless, 

pungent social conflicts including energy dilemma, environmental pollution and global warming have drawn 
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extensive attention [1, 2]. Researchers and engineers have devoted to lighting the beacons for alleviating the social 

contradiction. For automobile industry, electrification brings a promising response. Amongst all the existing 

choices, connected plug-in hybrid electric vehicles (cPHEVs) have been regarded as one of effective solutions 

which are equipped with high efficient internal combustion engines (ICEs) and large capacity batteries [3, 4]. 

cPHEVs, one type of evolved PHEVs, are equipped with vehicle-to-vehicle (V2V) and vehicle-to-infrastructure 

(V2I) communication, holding larger potential in fuel economy improvement. However, integration of multiple 

power sources within PHEVs, pervasively, incurs the additional controlling degree of freedom in energy 

management, potentially empowering PHEVs with better fuel economy and more decrement of harmful gas 

emission [5, 6]. Therefore, reasonable and even optimal allocation of power from different sources on the basis of 

internet of things is vital to fully exert the economy potential of cPHEVs. Consequently, designing an effective 

strategy by virtue of internet of things to intelligently manage the energy distribution between power sources of 

cPHEVs becomes the main research topic in this work. 

B. Related Works on Power Sources Management Strategies 

A number of typical methods, referred to as power sources management strategies (PSMSs) or energy 

management strategies (EMSs), have been successfully proposed, including rule based strategies[7, 8], 

optimization theory based strategies [9, 10], and machine learning based strategies [11, 12]. The rule-based 

strategies, holding relatively simple algorithm framework, have gained a great number of advocators in engineering 

practice. The simple candidates, such as threshold value strategies [13] and fuzzy logic strategies [14], control 

powertrain operation according to the preset logic derived from expert knowledge and experience, and often lead 

to non-optimal solution. Although some parameter optimization methods like genetic algorithms (GAs) [15] and 

particle swarm optimization (PSO) [16] have been successfully employed to improve control effect of rule based 

methods, the driving cycle dependent optimization still cannot guarantee adaptive application when faced with 

different driving conditions. Additionally, the optimization-based methods, such as dynamic programming (DP) 

[17], Pontryagin’s minimum principle (PMP) [18], and quadratic programming (QP) [19], can attain the global 

optimal solutions, usually with the price of high computational complexity. Nonetheless, dependence on the prior 

knowledge of future driving conditions prevents the global optimization-based PSMSs from real-time 

implementation. In the premise of neglecting the validated minor difference with the global optimization-based 

PSMSs [20], the instantaneous optimization-based PSMSs have been progressively accepted for their potential of 

real-time implementation. Typical methods, i.e., equivalent minimization consumption strategy (ECMS) [21], and 
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model predictive control (MPC) algorithms [22], have been widely researched. In spite of the preferable capability 

in real-time application, implementation effect of instantaneous optimization-based methods is still constrained by 

driving cycle information. Some inner parameters of strategies, e.g., the equivalent factor in ECMS [23], need to 

be dynamically adjusted in the light of the identified driving conditions. Machine learning based methods, such as 

the heuristic dynamic programming based methods [24] and reinforcement learning based methods [25], declare to 

achieve the rational controlling performance based on one or several historical driving cycle data. However, 

adaptability to variation of driving conditions should be further investigated.  

Actually, flexibility of different driving conditions has been a critical factor that impedes optimal PSMSs 

implemented in real time, and expedites inspiration of some novel methods by integrating the vehicle-environment 

cooperative control, such as adaptive ECMSs [26, 27] and stochastic DP (SDP) [28, 29]. By incorporating 

classification of driving conditions and/or prediction of future velocity into PSMSs, adaptive energy management 

responding to different conditions is therefore fulfilled prominently; whereas the onboard ability in self-adaptation 

of driving conditions imposes heavy computation burden on vehicle control unit (VCU), thus indirectly lowering 

the system efficiency. In addition, methods to identify driving conditions or forecast future driving behaviors, i.e. 

Markov Chain (MC) [30, 31], demand a variety of data for adaptive application in different driving conditions, and 

elevate the application cost significantly.  

C. Related Works on Workload Offloading Optimization  

Emergency of cPHEVs seems to be an ideal solution for the incurred tricky issues. cPHEVs, benefit from 

V2V and V2I communication, can acquire more environmental information and attain advanced vehicle-

environment cooperative control [32]. With the built predictive framework, which assimilates assistance from 

intelligent transportation systems (ITS), trip planning and energy management can be conducted successively in 

different layers, achieving the optimal real-time application [33]. As exhaustively described in former research, the 

raised PSMSs for cPHEVs can be divided into the route view based methods, eco-driving based algorithms, and 

predictive EMSs [10]. In most of them, energy flow between ICEs and battery packs is managed based on a multi-

stage work, where velocity profiles or battery state-of-charge (SOC) trajectories need to be macroscopically planed 

by global optimization-based methods on account of the collected traffic status data, followed by the 

microcosmically optimal energy management based on the devised reference trajectories [34]. The combination of 

the long-term and short-term optimization prompts the performance of instant PSMSs. Despite the laudable merits, 

some work can be further performed to gain better performance: 
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1) The predictive framework can be rationally refined to enable each local controller to share computation burden 

evenly with zero-lag communication.  

2) The calculation speed of planning reference trajectories can be accelerated while keeping the effect that is 

tightly close, or equal, to global optimization.  

D. Contribution  

In this context, we hereby presented a novel cooperative PSMS for cPHEVs based on the evolutional control 

framework, and the main contributions of this study can be attributed to the following two aspects: 

1) A brand-new hierarchical control framework is designed. The two-layer control framework moves the 

computation task from the original on-board controller to the partial cloud based controller with several 

asynchronous units, thereby relieving heavy computation intensity originally imposed on the on-board 

hardware. The comparative analysis is performed to elaborately investigate the performance in general 

computation, communication speed and communication delay.  

2) A cooperative control strategy is developed to conduct active energy consumption plan and adaptive energy 

management successively. The active plan module programs the energy consumption globally, while the 

adaptive management module achieves the immediate control by tracking the optimally planned results. The 

global energy consumption plan by estimation of distribution algorithm (EDA) is limited within each route 

segment to accelerate computation speed. To narrow the gap of global optimization planned in route segment 

and in the whole trip, the terminal constraints (ending battery SOC) is actively adjusted by the back-

propagation neural network (BP-NN) and iterative DP (IDP) according to the shared traffic information. 

The remainder of this paper is organized as follows. The cPHEV model is described in Section II. The designed 

control framework is detailed in Section III. Section IV presents the proposed cooperative strategy, and Section V 

discusses the simulation results and evaluates the performance of raised method. The main conclusions are made 

in Section VI.  

II. MODELING OF CPHEVS 

As shown in Fig. 1, a single-axle parallel PHEV is employed for investigating the control framework and 

strategy. In it, the fuel energy and electric energy paths cooperatively exist. A 2.0L Atkinson internal combustion 

engine (ICE) and a 6.7 kWh lithium-ion battery pack, considered as the power sources, provide the energy for 

vehicle driving. A 124 kW electric motor is responsible for propelling the vehicle and recycling the braking energy 

that is stored in the battery pack. The tractive torque from ICE and motor is transmitted to wheels through a 6-
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speed automatic transmission. The detailed parameters of each component in powertrain are listed in Table 1. From 

Fig. 1, four operation modes exist in the studied PHEV, including the electric driving (EV) mode, hybrid driving 

assist (HDA) mode, hybrid driving charging (HDC) mode and engine driving modes. 

 
Fig. 1. The schematic of the cPHEV configuration. 

Table 1 Specifications of Components 

Components Variable Values 

Engine 

Type In-line four-cylinder petrol engine 

Displacement 2.0 L 

Maximum Power 103 kW @6200 rpm 

Maximum Torque 270 Nm @2500~6000 rpm 

Motor 

Maximum Power 124 kW 

Maximum Torque 305 Nm 

Maximum Speed 12480 rpm 

Battery 

Type Lithium-ion battery 

Capacity 21 Ah /6.7 kWh 

Nominal Voltage 300 V 

Generator (Starter) 
Maximum Power 8.5 kW 

Maximum Torque 45 Nm 

Gearbox Type 6-Speed AT 

At wheels, the tractive torque from ICE and motor is applied to overcome the driving resistance. The power 

balance equation can be formulated, as: 

2
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where 
reqP  is the required tractive power; G ,   and f  denotes the gravity, gradient and rolling resistance factor, 

respectively; DC , A  and v  is the aerodynamic drag factor, frontal area and vehicle speed, respectively; a  denotes 

the acceleration; and  , t  and m  expresses the correction coefficient of rotating mass, transmission efficiency, 

vehicle mass, respectively. 

The relationship between the tractive torque at wheels and acceleration can be written as: 
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where 2

1

1
( )

2
DP C Av k= , 2 cos ( ) sin ( )P mgf k mg k = + , and g denotes the gravity acceleration. The tractive torque at 

wheels comes from the ICE and motor, of which the relationship can be expressed as: 

 
_ _req fuel path ele pathT T T= +

                                                                  
 (3) 

where 
reqT  is the required tractive torque; 

_fuel pathT  and 
_ele pathT  is the tractive torque provided by the fuel path and 

electric path, respectively. In different operating modes, the tractive force transmitted to wheels can be calculated 

as:  
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where 
engT  and emT  denotes the engine and motor torque, respectively; 

gbi  and 
fdi  denotes the gear and final drive 

ratio;
gn  is the gear number; and whR  is the wheel radius. In (4), 1cluS =  means the clutch is engaged, and in contrast 

0cluS =   denotes the clutch is disengaged. Based on the static engine model, in which the efficiency map can be 

acquired from a benchmark calibration, the engine efficiency can be described as: 

 ( , )
eng eng

eng eng eng
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where 
eng  denotes the engine net efficiency, 

eng  means the rotating speed of engine, lhvQ   represents the fuel 

lower heating value, and 
fm  expresses the fuel consumption rate. Due to the fast transient response, the dynamic 

behaviors of electric motor are neglected. In the parallel PHEV, the electric motor can operate as the tractive motor 

or generator, and the relationship between the motor torque and power can be expressed as:  
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where em  is the angular speed of electric motor; emP  is the power of electric motor; and mot  and 
gen  denotes the 

efficiency in tractive mode and generator mode, respectively. For easing of modelling the battery, the influence of 

operating temperature and degradation is neglected, and a simple equivalent circuit model is employed to 

characterize the battery electrical performance. The variation of SOC can be calculated as: 
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where 
ocV  is the open circuit voltage of battery, 

intR  is the internal resistance of battery, 
battP  is the battery power, 

and battQ  is the battery capacity. 

III. THE PROPOSED CONTROL FRAMEWORK  

A. The Novel MEC based Control Framework 

Generally, conventional vehicle controllers are installed in vehicle bodies. After recognizing driving 

requirement from drivers, high level control units in controllers will rationally choose the suitable operation modes 

and properly manage the energy flow successively. Energy distribution orders will be sent to the lower control 

units for driving operation of powertrain components. In the single-framework based controllers, control orders are 

executed through multiple stage operations. After integrating complex optimal control algorithms to the single-

framework based controller, the computation burden will be undoubtedly increased.  

To lessen the computation burden imposed on the VCU, a novel control framework is therefore developed. In 

the brand-new control framework, partial control tasks are shifted to the mobile edge computation units (MECUs) 

[35-38] at roadside, thereby fully exploiting merits of mobile edge computation (MEC) with the support of 

advanced communication technologies. In general, for the fog computation in intelligent transport systems, the 

static scheduling scheme is usually adopted, where the incoming tasks are allocated to their destinations with a 

fixed probability, namely “Static Scheduling” [39]. In addition, to improve the scheduling flexibility, dynamic 

scheduling schemes are adopted that can adaptively alter scheduling process based on the varying queue length 

[40]. For example, when a server is longer than other servers, the new incoming arrivals will be scheduled to other 

servers with relatively shorter queues. In the proposed algorithm, a probabilistic function 
,j sP  is defined in the 

dynamic scheduling mechanism, and it represents the probability of sending a job j to server s. The birth of MEC 

has contributed to wide improvement on the vehicle-environment control. More traffic status data shared from the 

volunteered vehicles on route segments, such as global position system (GPS) coordinates, vehicle speeds, 

distances to forward vehicles and travel destination, can be collected and processed by MECUs, thereby integrating 

more environmental information into vehicle control. With the benefits from the powerful computation capability 

in MECUs and limited supervision scope, the processing ability in MECUs can be remarkably prompted. 

The vehicle controller includes two parts, which is denoted as powertrain control unit (PCU) in Fig. 2 (a). The 

master level control units are located in the MECUs, mainly responsible for sensing, collecting and processing the 

predominant traffic information. The reference optimal control schemes can be generated in PCU-Part 1. In PCU-

Part 2, the high-level control unit optimally decides the powertrain operation modes and allocates the energy 
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distribution in powertrain by tracking the reference control scheme sent from PCU-Part 1. Then, the control 

decisions from PCU will be executed finally. The PCU-Part 1, as a matter of fact, mainly deals with the 

macroscopically long-term control process, while PCU-Part 2 takes charge of the microcosmically short-term 

management. The synergetic work in the asynchronous controller refines the control effect. To validate the 

performance of raised control framework, some comparable evaluation is made in the following section.

 
(a) 

 
(b) 

 
(c) 

              
(d)                                                                                                    (e)  

 
(f) 
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Fig. 2. Illustration on designed control framework and methods. (a) The illustration of the proposed framework. (b) MEC-based IoV 

system. (c) The time frame for the MEC-based IoV. (d) Delay versus transmit power at the vehicle. (e) Transmit rate versus transmit 

power at the vehicle. (f) The control process of the proposed strategy. 

B. Evaluation on the Novel MEC Based Control Framework 

We consider a MEC-based internet of vehicle (IoV) system, as shown in Fig. 2 (b), where the MECU is 

mounted at the base station (BS) and owns enough computational capability. We assume that the computing 

capacity of MEC server as F Giga CPU cycles/s, and the number of antennas at the BS as N. Moreover, we suppose 

the cooperative collision avoidance (CCA) [41] communication protocol is adopted, which is an emerging vehicular 

safety application using IEEE- and ASTM-adopted dedicated short-range communication (DSRC) standard. The 

vehicle is equipped with a single antenna. On this basis, the MEC-based time frame can be expressed in Fig. 2 (c). 

For the channel estimation, the vehicle needs to transmit a small number of pilot signals to BS, and then BS 

estimates the channel. Subsequently, the vehicle offloads the input data to BS, and the MEC server performs 

calculations. Finally, BS sends back the computing results (controlling information) to the vehicle. Since the 

transmitted data both at the channel estimation and return control information phases are very small, the 

transmission time is extremely short and can be ignored. Here, we only consider the offloading and computing time.  

We assume that the perfect channel estimation can be obtained at BS by the advanced channel estimation 

algorithm. The received signal by BS can be expressed as: 

 y px n= +vh
                                                                              

 (8) 

where 1Nh  denotes the channel coefficient between BS and the vehicle, 1Nv is the detection vector at the 

BS, p and x are the transmitted power and signal by the vehicle with 2{| x | } 1 = , respectively. N  expresses the 

independent and identically distributed additive white Gaussian noise with zero mean value, i.e., 2(0, )N  . Then, 

the rate can be written as: 
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where B is the transmission bandwidth. Generally, BS can adopt the maximal-ratio combiner (MRC) technique, 

and thus /H
v=h ||h|| . On this basis, the transmit rate can be rewritten as: 
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And the transmission delay can be calculated as  
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where C denotes the input data from the vehicle to BS. Additionally, we assume W as the number of the required 

computation, and the computing time can be expressed as: 

 
3

W
T

F
=

                                                                                 
 (12) 

Finally, the total delay can be expressed as 
2 3T T T= + . To minimize the delay, we formulate the following 

optimization problem: 

Maximize:
2 3T T+ , Subject to:

maxp p  

where
maxp  denotes the maximum transmit power of vehicle. The above optimization problem can be directly 

solved by setting the maximum transmit rate. We set the following simulation parameters to calculate the delay. 

As a comparison, we assume that the computing capacity at the vehicle is 10 or 20 Giga CPU cycles/s. B=10 MHz,

2 144 dBm = − , the distance between the vehicle and BS is 20 m, the antennas number is N=8, and the computing 

capacity at the MEC server is F=50 Giga CPU cycles/s. The data length is C=0.1 Mbits, and computing number 

W=0.1 Giga CPU cycles. 

From Fig. 2 (d), we find that the delay is lower than 4ms when the edge computing is performed. Meanwhile, 

the delay decreases with the increment of transmit power of the vehicle. In addition, from Fig.2 (e), one can observe 

that the transmit rate can reach 85.6 10  bit/s when the transmit power of vehicle is 20 dBm, which is enough to 

guarantee the data transmission.   

IV. COOPERATIVE POWER SOURCES MANAGEMENT STRATEGY 

A. Two-Step Cooperative Control Strategy for cPHEVs 

As shown in Fig. 2 (f), a two-stage process is imperative to realize the energy management in the proposed 

cooperative control strategy for cPHEVs. According to the shared traffic information, the future velocity profile in 

each segment will be predicted by the method that was proposed in our former work [42]. Based on the forecasted 

velocity profile, the reference battery SOC trajectory in each route segment will be globally calculated in the master 

level control unit installed in the MECU. The generated battery SOC trajectories and predicted velocity profiles in 

different route segments will be sent to the high-level control unit installed in the vehicle. The tracking algorithm 

in the high level control unit can regulate the energy flow between the engine and battery according to the optimal 

SOC trajectories and velocity profiles. 
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In this study, EDA is employed to generate the reference SOC trajectories in master level control units, and 

MPC is in charge of tracking the reference control policies in high level control unit. The velocity profile in each 

route segment is predicted with the full consideration of traffic macroscopic behaviours and security. It is worth 

pointing out that the reference control policies should be generated in each route segment for reducing the 

computation burden. However, the narrowed scope in global optimization will deteriorate the optimization effect, 

given that the terminal states of former route segment will be sent to the MECU that is responsible for the latter 

route segment. This means that the planned reference control policies in each route segment cannot delegate the 

optimal solutions to ensure the global optimal fuel economy in the whole trip. To bridge the gap when applying 

global optimization in route segment and in whole trip, active adjustment in energy consumption in each route 

segment is indispensable to improve the performance of raised cooperative control strategy. The detailed method 

for active adjustment of planning reasonable energy consumption will be introduced in the following section. 

B. Fundamental Energy Consumption Plan 

The energy consumption in each route segment is fundamentally planned by EDA, which is one of the 

validated evolution algorithms in parameter estimation and global optimal control [43, 44]. By virtue of the 

probabilistic models, priori information in terms of problem structure is integrated into the optimizing process, 

contributing to generation of the ideal performance of EDA [45]. EDA tries to obtain the solution by evaluating 

the general performance in each iteration, rather than digging out the personally optimum in each iteration from 

the perspective of individual performance solved by GA or PSO. In addition, the unknown information of 

optimization space can be detected by the probabilistic model, so as to increase the probability of obtaining the 

optimal solutions [46]. The execution process of EDA is shown in Fig. 3 (a). 

In the implementation process of EDA, the fitness value function of evaluating the macroscopic performance 

can be expressed as: 

         ( , ) batt

e f k k k s
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P
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Q
= +                                                                  (13) 

where k is the weight on electric energy consumption. The inequality constraints can be expressed as: 
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where the subscripts min and max denotes the minimum and maximum value of each variable, respectively. The 

optimization control by EDA is performed in distance domain for better satisfying the local constraints. In the 

distance domain calculation, velocity at next location can be described as: 

      
2

( 1) ( ) ( )
( ) ( 1)

s
v k v k v k

v k v k


+ = +

+ +
                                                         (15) 

where s  is the calculation step in distance, and k and k+1 denote the location at current and next step. The 

probabilistic model in EDA is the Gaussian network model [47], and each continuous variable iX X in the local 

density function can be written as: 

         
,

1
( , ) ( ; ( ), )

i

s

i i i i i ji i jx j pa
i

f x pa N x m b x m
v




 + −                                                (16) 

where 2( ; , )N x    is the univariate normal distribution with mean value   and variance 2 ; i  is the local 

parameter which includes 
im , 

ib  and 
iv . 

im  denotes the unconditional mean of 
iX ;  

ib  is a column vector; 
iv  is the 

conditional variance of iX  under assigned s

ipa ; and 
jib  is the linear coefficient reflecting the dependence between

jX and iX . The adopted sampling and learning methods in EDA are the univariate Gaussian model based method 

and greedy score method, respectively [48, 49]. 

To fast complete the optimization process in EDA with preferable performance, it is recommended that the 

iteration and population number should be carefully determined by trail-and-error. Given the WLTC driving cycle 

[50], the computation intensity, terminal battery SOC deviation, and fuel consumption by EDA with different 

populations and iterations are compared, and the results are presented in Fig. 3 (b). As can be observed, it looks 

closer to the set terminal SOC constraint with larger population and iteration. Likewise, the fuel consumption will 

be certainly lower. However, the increase of population and iteration will incur more computation labor, which is 

not applicable in real-time implementation. By comprehensively trading off accuracy, optimization effect, and 

computation burden, the number of iteration and population are set to 800 and 200, respectively. 
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(a)                                                                                                        (b)  

 
(c) 

Fig. 3. Illustration on results by EDA. (a) The implementation process of EDA. (b) Calculation results by EDA. (c) Battery SOC 

decreasing slopes by EDA. 

C. Active Adjustment in Energy Management Plan 

As requested, some active adjustment should be performed to narrow the distance between applying global 

optimization in route segment and in the whole trip. The difference is attributed to the running global optimization 

in route segment without chance of previewing the driving conditions in the whole trip. This may lead to the local 

optimal in each route segment rather than global optimum. Furthermore, the global optimization integrally 

considers the effect of driving condition variation in each route segment, imposed on the total fuel economy, by 

intelligently governing more electric energy to be consumed in some route segments. Consequently, the 

performance of applying global optimization in route segment might be much closer to that by running global 

optimization in the whole trip through certain adjustment according to different driving conditions. To be specific, 

in the conditions of favoring the EV and HAD mode, more electric energy consumption will be encouraged. The 

HDC mode should be the prior choice in the conditions of enlarge the engine power to charge the battery.  

Fig. 3 (c) illustrates the SOC declining slopes by the EDA under different driving conditions with different 

initial SOC values. Clearly, the difference in declining slopes reveals diverse electric energy consumption level 
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under different driving conditions. After carefully analyzing the interrelation between the SOC declining slope and 

driving conditions, an adjustment function could be derived, as:  

 ter f cor iniSOC T k s SOC= +
                                                                    

 (13) 

where 
terSOC  and 

iniSOC  denotes the initial and terminal SOC value in each route segment, respectively; 
cork  is 

originally battery SOC declining slope acquired from offline calculation; and 
fT  is the traffic factor which can be 

expressed as: 

 ave
f

std

v
T

v
=                                                                                  (14) 

where 
avev  is the average speed in a certain route segment, and

stdv  is the velocity standard deviation.
avev  and 

stdv  

can be calculated according to the predicted velocity profile in each route segment. According to (17), the terminal 

SOC is actively adjusted in terms of the traffic conditions, thereby subjectively regulating the electric energy 

consumption in each route segment. 
cork , as described, is acquired through the offline calculation. The 

conventional manner of enabling cork  in real time is to generate look-up tables and program them into the controller. 

Despite the simple implementation process shown in (17), the method may occupy much memory with different 

initial SOC values. As such, an efficient method is preferred in this paper, of which the process is illustrated in Fig. 

4 (a). As can be found, 
cork  will be the output directly derived from a pre-trained NN with the premise of acquiring 

the initial battery SOC and the estimated electric energy consumption. The latter can be calculated by:  

        _ _( ( )) ( ( ))e basic req t eng opt sE P v s P v s d= −                                                         (19) 

where 
_eng optP  denotes the engine power corresponding to the optimal operation points in the best fuel rate line with 

the deterministic velocity, s is the simulation step in distance domain. According to cork , 
fT  and adjusted terminal 

SOC could be calculated by (17) and (18). 

In this study, a three-layer BP-NN is adopted. The discussion in [51] justified that a three-layer BP-NN with 

a Sigmoid function based hidden layer can infinitely approximate to any nonlinear correlation. The Sigmoid 

function describes the interaction between the nodes in the hidden layer and output layer. In the preferred BP-NN, 

the number of nodes in input layer, hidden layer, and output layer are set to n, l, and m, respectively. The output of 

the input layer, hidden layer, and output layer are expressed by ( ) ( 1,2,..., )ix p i n= , ( ) ( 1,2,..., )iy p i l=  and 

( ) ( 1,2,..., )io p i m= , respectively. The weights in the input and hidden layer and in between are ( 1,2,..., )ji j l =  and 
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( 1,2,..., )kjv k m= ; and the threshold values of hidden and output layer are 
j  and 

k . The training process of the 

three-layer BP-NN are described as follows: 

Step 1: Initialize the number of nodes in the input layer, hidden layer, and output layer; their corresponding 

weights as well as the threshold values of hidden and output layer. 

Step 2: Input the training data to proceed the forward propagation, and obtain the output from the nodes in 

output layer, as: 

                                                                       
( )

( )

j kj j kj

j j

k kj j jj

i k

u v y

y f u

s v y

o f s





 = +


=


= +


=




                                                                  (20) 

Step 3: Calculate the error i  between the output io  of the forward propagation and real output it  of the trained 

data, as:  

             ( ) (1 )i i i i io t t o = − −                                                                         (21) 

Step 4: Proceed the backward propagation with i , and calculated the error signal 
j  caused by nodes in the 

hidden layer, as: 

            ( ) (1 )i i kj j jk
v y y = −                                                                      (22) 

Step 5: Adjust the weight and threshold values by: 

     

*

*

*

*

kj kj i j

ji ji i i

j j j

k k k

v v y

x



  

  

  

 = +


= +


= +
 = +

                                                                         (23) 

where  is the learning rate.  

Step 6: Repeat steps 1 to 6 and calculate the mean square error between the output of the BP-NN and real 

value by: 

                2

1 1

1
( )

2

N

k kl k
E o t

N = =
= −                                                                   (24) 

The training process will be repeated until E is lower than the pre-set value. The data for training the specific 

BP-NN is prepared offline by IDP [52] based on the collected driving cycle data. The length of each driving cycle, 

gathered in real route segment with different driving conditions, is 1500 m. The velocity profiles of partial chosen 

driving cycles are shown in Fig. 4(b). The IDP algorithm, as a numerical method, can save the calculation time 

while attain the quasi-optimal effect, compared with the optimal solutions provided by the deterministic DP (DDP) 
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with smaller amount of state and control variables. In each iteration, the grid size of state and control variable will 

be adjusted to endeavour the lowest request on processor memory [45]. To constrain the electric energy, the stage 

cost function in IDP to calculate the cost-to-go values of each discrete state can be expressed as: 

   ( , ) batt

k f k k t

lhv

P
h m x u

Q
= +                                                                      (25) 

where 
t  

denotes the weight on electric energy consumption, and can be calculated as: 

        
3

2
_ _ target _ _ target( 1) ( ) ( ( ) ( )) ( ( ) ( ))t t e real e e real eq q sign E q E q E q E q  + = + −  −                               (26) 

where q  is the iteration time, 
_e realE  is the real electric energy consumption in qth iteration, 

e_targetE  is the target 

electric energy consumption, and is a constant parameter. In each iteration, 
t  is recalculated according to the 

attained electric energy consumption, trying to approximate the target value. In the IDP based optimization, the 

inequality constraints are the same with that in EDA optimization. The offline generated battery SOC decreasing 

slopes, based on the velocity profiles displayed in Fig. 4 (b), is demonstrated in Fig. 4 (c). 
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(b)  

 
(c)  

Fig. 4. Illustration on the raised strategy. (a) Process to plan terminal battery SOC. (b) Velocity profiles for generating training data. (c) 

Generated slope data by IDP. 

V. SIMULATION AND EVALUATION 

In this study, we perform a comprehensive evaluation for the proposed cooperative strategy based on the novel 

asynchronous control framework. The performance in active energy consumption plan by the raised strategy is 

emphatically analyzed. The general behaviors of the adaptive energy management are also discussed based on the 

MPC algorithm. All the simulation was executed on a workstation with an Intel Xeon E3-1270 @ 3.4 GHz with 32-

Gigabyte memory. Two driving routes are chosen with the total length of 4.5 km. Each MECU is responsible for the 

workload within 1.5 km. The selected driving routes stem from the urban center, of which the complex driving 

conditions are well suited for the validation of the MEC based cooperative control strategy. The real velocity 

profiles of the two driving routes are sketched in Fig. 5 (a), along with the predicted velocity. The predicted velocity 

profiles show high accuracy in contrast with the real driving data. The difference between the predicted velocity 

profiles and real driving data is caused by the data deficiency in some route segments. With respect to the simulation 

results, the EDA-W refers to the application of EDA on the whole route. The EDA-Seg indicates application of EDA 
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in each route segment without any energy consumption adjustment. The AEDA-Seg represents applying EDA in each 

route segment with the corresponding active adjustment. The calculation step in the EDA based optimization process 

in MEC-Us is 10m. The details of the experimental setup information are listed in Table 2. 

Table 2 Experimental Setup 

Experimental Setup  Detailed Information/Values 

Operation platform Matlab/Simulink 

Operation hardware 
Workstation with Intel Xeon E3-1270@ 3.4GHz 

with 32 Gb memory 

Population in EDA algorithm 200 

Iteration in EDA algorithm 800 

Sample step in EDA algorithm 10 m 

Prediction length in MPC  10 m 

Sample step in MPC  2 m 

Vehicle Mass 1700 kg 

Rolling resistance ratio 0.0015 

Aero dynamic drag ratio 0.31 

Vehicle frontal area 2 m2 

A. General Analysis on the Raised Control strategies in energy consumption plan 

Fig. 5 (b) and Table 3 compare the results in energy consumption according to different strategies when 

planning the energy consumption for the whole trip. The visual results shown in Fig. 5 (b) and the detailed statistical 

indexes in energy consumption roughly justify the reasonable performance of proposed method. The active 

adjustment in energy consumption plan contributes to the approximate optimal fuel economy, compared with that 

gained by EDA in whole trip, thus narrowing the performance gap of the two algorithms. Compared with the results 

based on EDA-Seg, the fuel consumption in two driving cycles is saved by up to 28.3%. The fuel consumption by 

AEDA-Seg in two driving cycles has reached 97.2% savings of EDA-W. The electric energy consumption by 

AEDA-Seg, comparing with that by EDA-Seg, is closer to that by EDA-W. From the engine and motor operation 

results shown in Figs. 5 (c) and (d), the percentage of different operation modes, including the EV, HAD, and HDC 

mode, are quite approaching between EDA-W and AEDA-Seg, revealing that the traffic-information-based active 

adjustment in energy consumption plan prompts the fuel economy with the resemble manners from EDA-W. To 

further evaluate the general performance of the raised method, we also compare the energy consumption by the 

raised method with other methods including DP, IDP and EDA-W. IDP is an adaptive managing method that can 

adjust the energy allocation considering given constraints [53]. IDP has been applied in our previous work to narrow 

the distance between the global optimization within whole trip in each route segment [53]. According to the 

numerical results listed in Table 4, the raised method in this paper outperforms the IDP in adjusting energy 

consumption in each route segment and achieves the near-optimal energy consumption that is close to that by EDA-

W and DP. Compared with the IDP, the fuel consumption by AEDA-Seg is reduced by up to 1.99% in two driving 

cycles shown in Fig. 5 (a), and it is a remarkable improvement, compared with our previous work. The fuel 
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consumption by the AEDA-Seg in two driving conditions reaches 96.2% savings of DP. The electric energy 

consumption by the AEDA-Seg is also closer to that by DP when compared with the EDA-Seg. The further 

evaluation on several existing methods manifests the enhanced performance of the raised AEDA-Seg method. 

In addition to the general evaluation on the energy consumption resulted from different methods, the 

complexity analysis of algorithms is also performed, which is reflected by computation duration of algorithms 

listed in Table 5. It is necessary to note that the results in Table 4 are the total computation time in whole trips, and 

results by EDA-Seg and AEDA-Seg are the sum of computation duration in all the route segments. Besides, the 

travel times are calculated based on the predicted velocity profiles shown in Fig. 5 (a). According to the results in 

Table 4, all EDA methods can accomplish the computation within travel time, proving reasonable capability in 

real-time application. The EDA-Seg and AEDA-Seg narrow the optimization scopes with route segments, reducing 

computation time and pressure on hardware. With the existing adjustment in AEDA-Seg, the computation times 

are slightly longer than those by EDA-Seg in two trips.  

Table 3 Energy Consumption in Whole Trips by Different EDA Methods 

Trip 
Control 

Strategy 

Fuel Consumption Electric Energy 

Consumption (kWh) (g) (L/100 km) 

1 

EDA-W 72.88 2.23 1.39 

EDA-Seg 102.36 3.14 1.24 

AEDA-Seg 93.47 2.87 1.26 

2 

EDA-W 78.09 2.39 1.34 

EDA-Seg 112.05 3.43 1.16 

AEDA-Seg 80.51 2.46 1.31 

 

        
                                                         (a)                                                                                                        (b)  

 
                                                         (c)                                                                                                        (d)  
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Fig. 5. General analysis results in energy consumption plan. (a) Predicted velocity profile in two travel routes. (b) Energy consumption 

comparison by different methods. (c) Engine torque by different methods in whole travel route. (d) Motor torque by different methods in 

whole travel route. 

Table 4 Energy Consumption in Whole Trips by Different Strategies 

Trip 
Control 

Strategy 

Fuel Consumption Electric Energy 

Consumption (kWh) (g) (L/100 km) 

1 

EDA-W 72.88 2.23 1.39 

DP 72.19 2.22 1.40 

IDP 95.21 2.91 1.24 

AEDA-Seg 93.47 2.87 1.26 

2 

EDA-W 78.09 2.39 1.34 

DP 77.43 2.37 1.35 

IDP 82.12 2.51 1.29 

AEDA-Seg 80.51 2.46 1.31 

Table 5 Computation Time in Whole Trips by Different Strategies 

Driving Cycle 
Control 

Strategy 

Travel 

Distance (m) 

Travel Time 

(s) 
Computation Time (s) 

1 

EDA-W 4500 473 447.13 

EDA-Seg 4500 473 396.45 

AEDA-Seg 4500 473 399.69 

2 

EDA-W 4500 654 431.49 

EDA-Seg 4500 654 382.46 

AEDA-Seg 4500 654 383.67 

B. Further Evaluation on the Simulation Results 

  To understand the manner in performance improvement by the proposed method, more analysis is conducted. 

As can be seen in Fig. 6 (a), there are three arresting change caused by the active adjustment of energy consuming 

manners in each driving cycles, labelled as AD1s, AD2s, and AD3s, respectively. The active adjustments, generally, 

are triggered in three different route segments of the two travel routes. By the raised method, the battery SOC 

declining slopes become actively smaller (labelled as AD1), compared with those by EDA-Seg, thereby leading to 

more electric energy consumption (listed in Table 6) in the first route segment of the two driving cycles. In the first 

route segments of two routes, the traffic conditions contribute to electric energy consumption with larger traffic 

factor values (shown in Table 6), thus regulating the terminal battery SOC lower consequently. Under the adjusted 

terminal constraints, the EDA encourages the HDC mode at the beginning of the two trips essentially. The ICE and 

motor, respectively shown in Figs. 6 (b) and (c), are coordinately governed to operate more in the HDC mode, 

compared with that by EDA-Seg, resulting in the initial increase of battery SOC. With the initially higher SOC and 

lower constraints on the terminal battery SOC, the battery SOC decreasing slopes can be therefore reduced further.  

In the second route segment of the first driving cycle, the traffic condition seems to be modest, also shown in 

Fig. 6 (a). However, some minor adjustment in terminal constraints is offered. The ending SOC is tuned to a slight 

smaller value, causing initial SOCs are lifted somewhat by urging more HDC mode compared with that by EDA-

Seg. The marked results (AD2s) depicted in Figs. 6 (b) and (c) manifest that more appearance of the HDC mode is 
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required by AEDA-Seg than by EDA-Seg. In the second route segment of the second driving cycle, the battery 

SOC decreasing rate is adjusted even though the terminal constraints on the battery SOC are almost the same. This 

active adjustment is dominated by the tuned terminal battery SOC in the first route segment of the second driving 

route. After transferring the terminal constraint from the first MECU to the second as the initial constraint for 

optimization in the second route segment, the EDA increases the battery SOC to reach the preset terminal 

constraining target by selecting more HDC modes. In the third route segment of the first driving cycle, active 

adjustment is made in the similar manner as that in the second route segment. In the third route segment of the 

second driving cycle, the terminal battery SOC is pared down obviously according to the specific traffic conditions, 

facilitating more electric energy to be consumed by choosing more EV and HDA modes. The marked AD3s in Figs. 

6 (b) and (c) validate that more favorable EV and HDA modes are preferred in the third route segment of the second 

route. Table 6 lists the detailed comparison in energy consumption solved by EDA-Seg and AEDA-Seg. As can be 

found, less fuel consumption and more electric energy utilization are reached by AEDA-Seg with larger traffic 

factor values. On the basis of detailed comparison between AEDA-Seg and EDA-Seg, it can be adequately 

summarized that the proposed AEDA-Seg achieves more similar performance to EDA-W. The active energy 

adjustment adapted to variation of traffic information offers flexible terminal conditions for EDA based solution, 

thus effectively narrowing the difference with that by EDA-W.    

To further investigate the superiority of proposed algorithm, more evaluation is performed with detailed results 

illustrated in Figs. 6 (d) to (f). Figs. 6 (d) and (e) show the operation points of engine and motor by different 

methods. With the adaptive adjustment, engine operation points by AEDA-Seg locate intensively in the fields with 

larger power that are similar with those by EDA-W, contributing to better fuel economy. On the contrary, EDA-

Seg leads to more disperse engine operation in lower power fields, deteriorating the fuel economy. The similar 

performances also appear in motor operation points distribution. Adaptive adjustment in AEDA-Seg, compared 

with no adjustment in EDA-Seg, brings operation points into concentrated field with higher efficiencies in both 

tractive and braking mode, improving total efficiencies of powertrain.  
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(a)                                                                                               (b)  

 
(c)                                                                                                 (d) 

 
(e)                                                                                                    (f)  

Fig. 6. Analysis results of further evaluation. (a) Battery SOC trajectories planned by different methods. (b) Engine torque comparison by 

different strategies. (c) Motor torque comparison by different strategies. (d) The engine operation points by different methods. (e) The 

engine operation points by different methods. (f) Engine and motor power probability distribution. 

Table 6 Energy Consumption in Each Segment by Different Strategies 

Drive Cycle Control Strategy 
Route 

Segment 

Traffic 

Factor Value 

Fuel Consumption 

(g) 

Electric Energy 

Consumption (kWh) 

1 

EDA-Seg 

R1 1.223 48.56 0.48 

R2 0.955 23.84 0.42 

R3 0.989 29.96 0.34 

AEDA-Seg 

R1 1.223 36.53 0.53 

R2 0.955 27.91 0.41 

R3 0.989 29.03 0.32 

2 

EDA-Seg 

R1 1.031 34.87 0.35 

R2 0.931 35.44 0.32 

R3 1.226 41.74 0.49 

AEDA-Seg 

R1 1.031 25.72 0.41 

R2 0.931 38.16 0.29 

R3 1.226 16.63 0.61 

Fig. 6 (f) compares the engine and motor power distribution probability by different methods in each route 

segment of route 2. The power distribution probability can reveal the operation trends of powertrain that are 

determined by strategies. As shown in Fig. 6 (a), the adjustment by AEDA-Seg requests more engine power to 
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charge battery in the beginning and more electric energy to accelerate the battery SOC decline frequency.  Therefore, 

the engine powers locating in large value sections by AEDA-Seg are more than those by EDA-Seg. In addition, 

smaller negative motor power demanded by AEDA-Seg becomes more frequent to charge the battery in the 

beginning. In other parts of route segments, larger positive motor powers are preferred by AEDA-Seg to fasten the 

consumption of electricity 

To justify the robustness of the raised method to different scenarios, we compare the energy consumption by 

the EDA-W, EDA-Seg, and AEDA-Seg in different driving conditions. Three driving cycles, corresponding to city 

urban, city suburban and highway conditions, are extracted from the open available database [54]. The length of 

the chosen cycles is also around 1500 m. Generally, the energy consumption listed in Table 7 reveals that the fuel 

consumption is undoubtedly consumed more in highway than in city urban condition as highway condition entails 

more engine operation. On the contrary, the city urban condition turns to request more electric energy. Among 

these three methods, the proposed AEDA-Seg can adjust energy consumption within each route segment in each 

driving cycle, enabling that total performance is close to that by the global EDA-W. The compare results highlight 

that the raised AEDA-Seg can reduce the energy consumption with fast calculation speed in different driving 

conditions and certain robustness.  

Table 7 Energy Consumption in Various Driving Conditions by Different Strategies 

Drive Cycle Control Strategy Fuel Consumption (g) Electric Energy Consumption (kWh) 

City Urban 

EDA-W 23.69 0.78 

EDA-Seg 35.43 0.64 

AEDA-Seg 24.31 0.73 

City Suburban 

EDA-W 31.61 0.59 

EDA-Seg 41.87 0.49 

AEDA-Seg 32.72 0.57 

Highway 

EDA-W 49.04 0.27 

EDA-Seg 55.43 0.25 

AEDA-Seg 49.72 0.28 

C. General Evaluation on Adaptive Energy Management  

In the simulation evaluation, we also conducted some simulation test for the adaptive energy management 

realized by MPC. In the context, the nonlinear MPC based instantaneous optimization method is still in a distance 

domain. Different from the optimization process in MECUs, the calculation step in the nonlinear MPC is reduced 

to 2 m and the horizon length for the receding optimization is set to 10 m. In addition to following the reference 

battery SOC trajectories, the MPC algorithm in the on-board controllers are also requested to track the predicted 

velocity profiles acquired from MECU to safely satisfy the traffic conditions. The optimization target of control 

algorithm is the fuel economy, and as such, the energy consumption optimization is presented and compared. In 

Fig. 7 (a), it is clear that the MPC algorithm can track the reference battery SOC trajectories tightly in most of the 



 

 

24 

time, guaranteeing that the optimal control policies generated in MECUs as the reference can be precisely explained 

by the vehicle powertrain. As can be seen in Fig. 7 (b), the ignorable difference existing in the engine and motor 

torque, is caused by the errors incurred in the nonlinear solving process. 

 
                                 (a)                                                                                           (b) 

Fig. 7. Components performance by MPC. (a) Battery SOC trajectory tracking results. (b) Components performance by MPC. 

VI. CONCLUSION 

  This paper proposes a novel control framework for the connected plug-in hybrid electric vehicles. The novel 

control framework based on the mobile edge computation, well balances the computation burden in each control 

unit of the vehicle controller. With the novel control framework, the original on-board controllers are extended to 

the hierarchically asynchronous controller with enhanced capability supplied by cloud computation. The raised 

cooperative control strategy can dramatically govern the energy flow within powertrains by activeenergy 

adjustment and adaptive management. The active energy adjustment method is particularly and widely investigated. 

The estimation of distribution algorithm with active adjustment on terminal constraintsachieves the optimal energy 

consumption plan in narrowed scope.  

In the future work, communication optimization for the built framework will be further investigated carefully 

for realization of fast, inexpensive and zero-lag communication. Additionally, fast global optimization method will 

also be explored to achieve better performance in real-time application.  
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