59 research outputs found

    Detection and Genetic Analysis of Porcine Bocavirus

    Get PDF
    Porcine Bocavirus (PBoV) has been reported to be associated with postweaning multisystemic wasting syndrome and pneumonia in pigs. In this study, a survey was conducted to evaluate the prevalence of PBoV in slaughter pigs, sick pigs, asymptomatic pigs and classical swine fever virus (CSFV) eradication plan herds in five provinces of China (Henan, Liaoning, Shandong, Hebei and Tianjin) by means of PCR targeting NS1 gene of PBoV. Among the total of 403 tissue samples, 11.41% were positive for PBoV. The positive rates of spleen (20.75%) and inguinal lymph node (27.18%) are higher than those of other organs. PCR products of twenty PBoV positive samples from slaughter pigs were sequenced for phylogenetic analysis. The result revealed that PBoV could be divided into 6 groups (PBoV-a~PBoV-f). All PBoV sequenced in this study belong to PBoV-a–PBoV-d with 90.1% to 99% nucleotide identities. Our results exhibited significant genetic diversity of PBoV and suggested a complex prevalence of PBoV in Chinese swine herds. Whether this diversity of PBoV has a significance to pig production or even public health remains to be further studied

    Research and Application on a Novel Clustering Algorithm of Quantum Optimization in Server Load Balancing

    Get PDF
    A quantum optimization scheme in network cluster server task scheduling is proposed. We explore and research the distribution theory of energy field in quantum mechanics; specially, we apply it to data clustering. We compare the quantum optimization method with genetic algorithm (GA), ant colony optimization (ACO), simulated annealing algorithm (SAA). At the same time, we prove its validity and rationality by analog simulation and experiment

    Propagation of tidal waves up in Yangtze Estuary during the dry season

    Get PDF
    Tide is one of the most important hydrodynamic driving forces and has unique features in the Yangtze Estuary (YE) due to the complex geometry of third-order bifurcations and four outlets. This paper characterizes the tidal oscillations, tidal dampening, tidal asymmetry, and tidal wave propagation, which provides insights into the response of the estuary to tides during the dry season. The structural components of tidal oscillations are initially attained by tidal analysis. The increasingly richer spectrum inside the estuary shows an energy transfer corresponding to the generation and development of nonlinear overtides and compound tides. A 2-D numerical model is further set up to reproduce tidal dynamics in the estuary. The results show that the estuary is a strongly dissipative estuary with a strong nonlinear phenomenon. Three amplifications are presented in the evolution process of tidal ranges due to the channel convergence. Tidal asymmetry is spatiotemporally characterized by the M-4/M-2 amplitude ratio, the 2M(2)-M-4 phase difference, and the flood-ebb duration-asymmetry parameter, and the estuary tends to be flood-dominant. There exists mimic standing waves with the phase difference of the horizontal and vertical tide close to 90 degrees when tidal wave propagates into the estuary, especially during the neap tide. In addition, the differences in tidal distortion, tidal ranges, and tidal waves along the two routes in the South Branch (S-B) suggest the branched system behaves differently from a single system

    Towards visible-wavelength passively mode-locked lasers in all-fibre format

    Get PDF
    锁模皮秒/飞秒光纤激光器具有小型化、光束质量好、稳定性佳、低成本且免维护等优点,然而,目前被动锁模光纤激光器工作波段仍主要局限在近红外1-2 μm光谱区域,在可见光波段(380-760 nm)却几乎未有进展。如何实现可见光被动锁模光纤激光器,直接产生小型化、低成本且高性能的可见光超快激光,是一直困扰超快激光研究领域的一个难题。罗正钱教授课题组通过数值求解金兹伯格-朗道方程,发现耗散孤子谐振机制利于可见光波段超大色散光纤腔被动锁模脉冲的稳定建立。基于数值模拟的结果,该研究成果是在可见光范围内向小型化超快光纤激光器迈出的重要一步。将为可见光超快光纤激光在精密光谱学、生物医学、显微成像、光通信、科学研究等领域的应用奠定基础,具有很好的研究潜力和应用价值。厦门大学为该论文的第一署名单位,电子科学与技术学院博士研究生邹金海为论文第一作者,罗正钱教授为论文通讯作者。Mode-locked fibre lasers (MLFLs) are fundamental building blocks of many photonic systems used in industrial, scientific and biomedical applications. To date, 1–2 μm MLFLs have been well developed; however, passively mode-locked fibre lasers in the visible region (380–760 nm) have never been reported. Here, we address this challenge by demonstrating an all-fibre visible-wavelength passively mode-locked picosecond laser at 635 nm. The 635 nm mode-locked laser with an all-fibre figure-eight cavity uses a Pr/Yb codoped ZBLAN fibre as the visible gain medium and a nonlinear amplifying loop mirror as the mode-locking element. First, we theoretically predict and analyse the formation and evolution of 635 nm mode-locked pulses in the dissipative soliton resonance (DSR) regime by solving the Ginzburg-Landau equation. Then, we experimentally demonstrate the stable generation of 635 nm DSR mode-locked pulses with a pulse duration as short as ~96 ps, a radio-frequency signal-to-noise ratio of 67 dB and a narrow spectral bandwidth of 1 nm) and modulated optical spectrum. This work represents an important step towards miniaturized ultrafast fibre lasers in the visible spectral region.This work was supported by the Major Research Plan of the National Natural Science Foundation of China (91750115), Equipment Pre-research Project of Equipment Development Department of Central Military Commission (61404140112), and Natural Science Foundation of Fujian Province for Distinguished Young Scientists (2017J06016).Prof. Zhengqian Luo acknowledges the Program for Young Top Notch Talents of Fujian Province and the Program for Nanqiang Young Top Notch Talents of Xiamen University.该研究受到国家自然科学基金、福建省杰出青年基金、福建省特支‘双百’青年拔尖人才项目以及厦门大学南强青年拔尖人才项目的支持

    Numerical Simulation of Solitary Wave Induced Flow Motion around a Permeable Submerged Breakwater

    Get PDF
    This paper presents a numerical model for the simulation of solitary wave transformation around a permeable submerged breakwater. The wave-structure interaction is obtained by solving the Volume-Averaged Reynolds-Averaged Navier-Stokes governing equations VARANS and volume of fluid VOF theory. This model is applied to understand the effects of porosity, equivalent mean diameter of porous media, structure height, and structure width on the propagation of a solitary wave in the vicinity of a permeable submerged structure. The results show that solitary wave propagation around a permeable breakwater is essentially different from that around impermeable one. It is also found that the structure porosity has more impact than equivalent mean diameter on the wave transformation and flow structure. After interacting with the higher structure, the wave has smaller wave height behind the structure with a lower travelling speed. When the wave propagates over the breakwater with longer width, the wave travelling speed is obviously reduced with more wave energy dissipated inside porous structure

    Numerical simulation of solitary wave propagation over a steady current

    Get PDF
    YesA two-dimensional numerical model is developed to study the propagation of a solitary wave in the presence of a steady current flow. The numerical model is based on the Reynolds-averaged Navier-Stokes (RANS) equations with a k-ε turbulence closure scheme and an internal wave-maker method. To capture the air-water interface, the volume of fluid (VOF) method is used in the numerical simulation. The current flow is initialized by imposing a steady inlet velocity on one computational domain end and a constant pressure outlet on the other end. The desired wave is generated by an internal wave-maker. The propagation of a solitary wave travelling with a following/opposing current is simulated. The effects of the current velocity on the solitary wave motion are investigated. The results show that the solitary wave has a smaller wave height, larger wave width and higher travelling speed after interacting with a following current. Contrariwise, the solitary wave becomes higher with a smaller wave width and lower travelling speed with an opposing current. The regression equations for predicting the wave height, wave width and travelling speed of the resulting solitary wave are for practical engineering applications. The impacts of current flow on the induced velocity and the turbulent kinetic energy (TKE) of a solitary wave are also investigated.National Natural Science Foundation of China Grant #51209083, #51137002 and #41176073, the Natural Science Foundation of Jiangsu Province (China) Grant #BK2011026, the 111 Project under Grant No. B12032, the Fundamental Research Funds for the Central University, China (2013B31614), and the Carnegie Trust for Scottish Universitie

    Investigation of nonlinear wave-induced seabed response around mono-pile foundation

    Get PDF
    YesStability and safety of offshore wind turbines with mono-pile foundations, affected by nonlinear wave effect and dynamic seabed response, are the primary concerns in offshore foundation design. In order to address these problems, the nonlinear wave effect on dynamic seabed response in the vicinity of mono-pile foundation is investigated using an integrated model, developed using OpenFOAM, which incorporates both wave model (waves2Foam) and Biot’s poro-elastic model. The present model was validated against several laboratory experiments and promising agreements were obtained. Special attention was paid to the systematic analysis of pore water pressure as well as the momentary liquefaction in the proximity of mono-pile induced by nonlinear wave effects. Various embedment depths of mono-pile relevant for practical engineering design were studied in order to attain the insights into nonlinear wave effect around and underneath the mono-pile foundation. By comparing time-series of water surface elevation, inline force, and wave-induced pore water pressure at the front, lateral, and lee side of mono-pile, the distinct nonlinear wave effect on pore water pressure was shown. Simulated results confirmed that the presence of mono-pile foundation in a porous seabed had evident blocking effect on the vertical and horizontal development of pore water pressure. Increasing embedment depth enhances the blockage of vertical pore pressure development and hence results in somewhat reduced momentary liquefaction depth of the soil around the mono-pile foundation.Energy Technology Partnership (ETP), Wood Group Kenny, and University of Aberdeen; the National Science Fund for Distinguished Young Scholars (51425901) and the 111 project (B12032)

    Consolidation of unsaturated seabed around an inserted pile foundation and its effects on the wave-induced momentary liquefaction

    Get PDF
    YesSeabed consolidation state is one of important factors for evaluating the foundation stability of the marine structures. Most previous studies focused on the seabed consolidation around breakwaters standing on the seabed surface. In this study, a numerical model, based on Biot’s poro-elasticity theory, is developed to investigate the unsaturated seabed consolidation around a nearshore pile foundation, in which the pile inserted depth leads to a different stress distribution. Seabed instabilities of shear failure by the pile self-weight and the potential liquefaction under the dynamic wave loading are also examined. Results indicate that (1) the presence of the inserted pile foundation increases the effective stresses below the foundation, while increases and decreases the effective stresses around the pile foundation for small (de/R3.3) inserted depths, respectively, after seabed consolidation, (2) the aforementioned effects are relatively more significant for small inserted depth, large external loading, and small Young’s modulus, (3) the shear failure mainly occurs around the inserted pile foundation, rather than below the foundation as previously found for the located marine structures, and (4) wave-induced momentary liquefaction near the inserted pile foundation significantly increases with the increase of inserted depth, due to the change of seabed consolidation state.National Natural Science Foundation for Distinguished Young Scholars (51425901), the National Natural Science Foundation of China (51209082, 51209083), the Natural Science Foundation of Jiangsu Province (BK20161509), the Fundamental Research Funds for the Central Universities (2015B15514), Jiangsu Graduate Research and Innovation Plan Grant (#CXLX11_0450) and the 111 project (B12032)

    Numerical Simulation of Solitary Wave Induced Flow Motion around a Permeable Submerged Breakwater

    Get PDF
    This paper presents a numerical model for the simulation of solitary wave transformation around a permeable submerged breakwater. The wave-structure interaction is obtained by solving the Volume-Averaged Reynolds-Averaged Navier-Stokes governing equations (VARANS) and volume of fluid (VOF) theory. This model is applied to understand the effects of porosity, equivalent mean diameter of porous media, structure height, and structure width on the propagation of a solitary wave in the vicinity of a permeable submerged structure. The results show that solitary wave propagation around a permeable breakwater is essentially different from that around impermeable one. It is also found that the structure porosity has more impact than equivalent mean diameter on the wave transformation and flow structure. After interacting with the higher structure, the wave has smaller wave height behind the structure with a lower travelling speed. When the wave propagates over the breakwater with longer width, the wave travelling speed is obviously reduced with more wave energy dissipated inside porous structure
    corecore