98 research outputs found

    Effect of rs1344706 in the ZNF804A gene on the brain network.

    Get PDF
    ZNF804A rs1344706 (A/C) was the first SNP that reached genome-wide significance for schizophrenia. Recent studies have linked rs1344706 to functional connectivity among specific brain regions. However, no study thus far has examined the role of this SNP in the entire functional connectome. In this study, we used degree centrality to test the role of rs1344706 in the whole-brain voxel-wise functional connectome during the resting state. 52 schizophrenia patients and 128 healthy controls were included in the final analysis. In our whole-brain analysis, we found a significant interaction effect of genotype Ã— diagnosis at the precuneus (PCU) (cluster size = 52 voxels, peak voxel MNI coordinates: x = 9, y = - 69, z = 63, F = 32.57, FWE corrected P < 0.001). When we subdivided the degree centrality network according to anatomical distance, the whole-brain analysis also found a significant interaction effect of genotype Ã— diagnosis at the PCU with the same peak in the short-range degree centrality network (cluster size = 72 voxels, F = 37.29, FWE corrected P < 0.001). No significant result was found in the long-range degree centrality network. Our results elucidated the contribution of rs1344706 to functional connectivity within the brain network, and may have important implications for our understanding of this risk gene's role in functional dysconnectivity in schizophrenia

    Giant room temperature anomalous Hall effect and magnetically tuned topology in the ferromagnetic Weyl semimetal Co2MnAl

    Full text link
    Weyl semimetals (WSM) have been extensively studied due to their exotic properties such as topological surface states and anomalous transport phenomena. Their band structure topology is usually predetermined by material parameters and can hardly be manipulated once the material is formed. Their unique transport properties appear usually at very low temperature, which sets challenges for practical device applications. In this work, we demonstrate a way to modify the band topology via a weak magnetic field in a ferromagnetic topological semimetal, Co2MnAl, at room temperature. We observe a tunable, giant anomalous Hall effect, which is induced by the transition between Weyl points and nodal rings as rotating the magnetization axis. The anomalous Hall conductivity is as large as that of a 3D quantum anomalous Hall effect (QAHE), with the Hall angle reaching a record value (21%) at the room temperature among magnetic conductors. Furthermore, we propose a material recipe to generate the giant anomalous Hall effect by gaping nodal rings without requiring the existence of Weyl points. Our work reveals an ideal intrinsically magnetic platform to explore the interplay between magnetic dynamics and topological physics for the development of a new generation of spintronic devices.Comment: 4 figures, 8 pages for the main text. The supplementary materials are included to

    Genetic Dissection of Heat Stress Tolerance in Faba Bean (Vicia faba L.) Using GWAS

    Get PDF
    Heat waves are expected to become more frequent and intense, which will impact faba bean cultivation globally. Conventional breeding methods are effective but take considerable time to achieve breeding goals, and, therefore, the identification of molecular markers associated with key genes controlling heat tolerance can facilitate and accelerate efficient variety development. We phenotyped 134 accessions in six open field experiments during summer seasons at Terbol, Lebanon, at Hudeiba, Sudan, and at Central Ferry, WA, USA from 2015 to 2018. These accessions were genotyped using genotyping by sequencing (GBS), and 10,794 high quality single nucleotide polymorphisms (SNPs) were discovered. These accessions were clustered in one diverse large group, although several discrete groups may exist surrounding it. Fifteen lines belonging to different botanical groups were identified as tolerant to heat. SNPs associated with heat tolerance using single-trait (ST) and multi-trait (MT) genome-wide association studies (GWASs) showed 9 and 11 significant associations, respectively. Through the annotation of the discovered significant SNPs, we found that SNPs from transcription factor helix–loop–helix bHLH143-like S-adenosylmethionine carrier, putative pentatricopeptide repeat-containing protein At5g08310, protein NLP8-like, and photosystem II reaction center PSB28 proteins are associated with heat tolerance

    Clinical Study Efficacy of Combined Laparoscopic and Hysteroscopic Repair of Post-Cesarean Section Uterine Diverticulum: A Retrospective Analysis

    Get PDF
    Background. Diverticulum, one of the long-term sequelae of cesarean section, can cause abnormal uterine bleeding and increase the risk of uterine scar rupture. In this study, we aimed to evaluate the efficacy of combined laparoscopic and hysteroscopic repair, a newly occurring method, treating post-cesarean section uterine scar diverticulum. Methods. Data relating to 40 patients with post-cesarean section uterine diverticulum who underwent combined laparoscopic and hysteroscopic repair were retrospectively analyzed. Preoperative clinical manifestations, size of uterine defects, thickness of the lower uterine segment (LUS), and duration of menstruation were compared with follow-up findings at 1, 3, and 6 months after surgery. Results. The average preoperative length and width of uterine diverticula and thickness of the lower uterine segment were recorded and analyzed. The average durations of menstruations at 1, 3, and 6 months after surgery were significantly shorter than the preoperative one ( < 0.05), respectively. At 6 months after surgery, the overall success improvement rate of surgery was 90% (36/40). Three patients (3/40 = 7.5%) developed partial improvement, and 1/40 (2.5%) was lost to follow-up. Conclusions. Our findings showed that combined treatment with laparoscopy and hysteroscopy was an effective method for the repair of post-cesarean section uterine diverticulum

    Genomic regions associated with herbicide tolerance in a worldwide faba bean (Vicia faba L.) collection

    Get PDF
    Weeds represent one of the major constraints for faba bean crop. The identification of molecular markers associated with key genes imparting tolerance to herbicides can facilitate and fasten the efficient and effective development of herbicide tolerant cultivars. We phenotyped 140 faba bean genotypes in three open field experiments at two locations in Lebanon and Morocco against three herbicide treatments (T1 metribuzin 250 g ai/ha; T2 imazethapyr 75 g ai/ha; T3 untreated) and one in greenhouse where T1 and T3 were applied. The same set was genotyped using genotyping by sequencing (GBS) which yield 10,794 high quality single nucleotide polymorphisms (SNPs). ADMIXTURE software was used to infer the population structure which revealed two ancestral subpopulations. To identify SNPs associated with phenological and yield related traits under herbicide treatments, Single-trait (ST) and Multi-trait (MT) Genome Wide Association Studies (GWAS) were fitted using GEMMA software, showing 10 and 14 highly significant associations, respectively. Genomic sequences containing herbicide tolerance associated SNPs were aligned against the NCBI database using BLASTX tool using default parameters to annotate candidate genes underlying the causal variants. SNPs from acidic endochitinase, LRR receptor-like serine/threonine-protein kinase RCH1, probable serine/threonine-protein kinase NAK, malate dehydrogenase, photosystem I core protein PsaA and MYB-related protein P-like were significantly associated with herbicide tolerance traits

    Vitreous Olink proteomics reveals inflammatory biomarkers for diagnosis and prognosis of traumatic proliferative vitreoretinopathy

    Get PDF
    BackgroundThe aim of this study was to identify inflammatory biomarkers in traumatic proliferative vitreoretinopathy (TPVR) patients and further validate the expression curve of particular biomarkers in the rabbit TPVR model.MethodsThe Olink Inflammation Panel was used to compare the differentially expressed proteins (DEPs) in the vitreous of TPVR patients 7–14 days after open globe injury (OGI) (N = 19) and macular hole patients (N = 22), followed by correlation analysis between DEPs and clinical signs, protein–protein interaction (PPI) analysis, area under the receiver operating characteristic curve (AUC) analysis, and function enrichment analysis. A TPVR rabbit model was established and expression levels of candidate interleukin family members (IL-6, IL-7, and IL-33) were measured by enzyme-linked immunosorbent assay (ELISA) at 0, 1, 3, 7, 10, 14, and 28 days after OGI.ResultsForty-eight DEPs were detected between the two groups. Correlation analysis showed that CXCL5, EN-RAGE, IL-7, ADA, CD5, CCL25, CASP8, TWEAK, and IL-33 were significantly correlated with clinical signs including ocular wound characteristics, PVR scoring, PVR recurrence, and final visual acuity (R = 0.467–0.699, p < 0.05), and all with optimal AUC values (0.7344–1). Correlations between DEP analysis and PPI analysis further verified that IL-6, IL-7, IL-8, IL-33, HGF, and CXCL5 were highly interactive (combined score: 0.669–0.983). These DEPs were enriched in novel pathways such as cancer signaling pathway (N = 14, p < 0.000). Vitreous levels of IL-6, IL-7, and IL-33 in the rabbit TPVR model displayed consistency with the trend in Olink data, all exhibiting marked differential expression 1 day following the OGI.ConclusionIL-7, IL-33, EN-RAGE, TWEAK, CXCL5, and CD5 may be potential biomarkers for TPVR pathogenesis and prognosis, and early post-injury may be an ideal time for TPVR intervention targeting interleukin family biomarkers

    Giant polarization in super-tetragonal ferroelectric thin films through interphase strain

    Get PDF
    Strain engineering has emerged as a powerful tool to enhance the performance of known functional materials. Here we demonstrate a general and practical method to obtain super-tetragonality and giant polarization using interphase strain. We use this method to create an out-of-plane–to–in-plane lattice parameter ratio of 1.238 in epitaxial composite thin films of tetragonal lead titanate (PbTiO3), compared to 1.065 in bulk. These thin films with super-tetragonal structure possess a giant remanent polarization, 236.3 microcoulombs per square centimeter, which is almost twice the value of known ferroelectrics. The super-tetragonal phase is stable up to 725°C, compared to the bulk transition temperature of 490°C. The interphase-strain approach could enhance the physical properties of other functional materials.PostprintPeer reviewe

    Longitudinal Study of Recurrent Metastatic Melanoma Cell Lines Underscores the Individuality of Cancer Biology.

    Get PDF
    Recurrent metastatic melanoma provides a unique opportunity to analyze disease evolution in metastatic cancer. Here, we followed up eight patients with an unusually prolonged history of metastatic melanoma, who developed a total of 26 recurrences over several years. Cell lines derived from each metastasis were analyzed by comparative genomic hybridization and global transcript analysis. We observed that conserved, patient-specific characteristics remain stable in recurrent metastatic melanoma even after years and several recurrences. Differences among individual patients exceeded within-patient lesion variability, both at the DNA copy number (P<0.001) and RNA gene expression level (P<0.001). Conserved patient-specific traits included expression of several cancer/testis antigens and the c-kit proto-oncogene throughout multiple recurrences. Interestingly, subsequent recurrences of different patients did not display consistent or convergent changes toward a more aggressive disease phenotype. Finally, sequential recurrences of the same patient did not descend progressively from each other, as irreversible mutations such as homozygous deletions were frequently not inherited from previous metastases. This study suggests that the late evolution of metastatic melanoma, which markedly turns an indolent disease into a lethal phase, is prone to preserve case-specific traits over multiple recurrences and occurs through a series of random events that do not follow a consistent stepwise process.Journal of Investigative Dermatology advance online publication, 2 January 2014; doi:10.1038/jid.2013.495

    Immunopathological signatures in multisystem inflammatory syndrome in children and pediatric COVID-19

    Get PDF
    : Pediatric Coronavirus Disease 2019 (pCOVID-19) is rarely severe; however, a minority of children infected with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) might develop multisystem inflammatory syndrome in children (MIS-C), with substantial morbidity. In this longitudinal multi-institutional study, we applied multi-omics (analysis of soluble biomarkers, proteomics, single-cell gene expression and immune repertoire analysis) to profile children with COVID-19 (n = 110) and MIS-C (n = 76), along with pediatric healthy controls (pHCs; n = 76). pCOVID-19 was characterized by robust type I interferon (IFN) responses, whereas prominent type II IFN-dependent and NF-κB-dependent signatures, matrisome activation and increased levels of circulating spike protein were detected in MIS-C, with no correlation with SARS-CoV-2 PCR status around the time of admission. Transient expansion of TRBV11-2 T cell clonotypes in MIS-C was associated with signatures of inflammation and T cell activation. The association of MIS-C with the combination of HLA A*02, B*35 and C*04 alleles suggests genetic susceptibility. MIS-C B cells showed higher mutation load than pCOVID-19 and pHC. These results identify distinct immunopathological signatures in pCOVID-19 and MIS-C that might help better define the pathophysiology of these disorders and guide therapy
    • …
    corecore