105 research outputs found

    Controlling the polarization of nitrogen ion lasing

    Full text link
    Air lasing provides a promising technique to remotely produce coherent radiation in the atmosphere and attracts continuous attention. However, the polarization properties of N2+ lasing with seeding has not been understood since it was discovered ten years ago, in which the behaviors appear disordered and confusing. Here, we performed an experimental and theoretical investigation on the polarization properties of N2+ lasing and successfully revealed its underlying physical mechanism. We found that the optical gain is anisotropic owing to the permanent alignment of N2+ induced by the preferential ionization of the pump light. As a result, the polarization of N2+ lasing tends to align with that of the pump light after amplification, which becomes more pronounced with increasing amplification factor. Based on the permanent alignment of N2+, we built a theoretical model that analytically interpreted and numerically reproduced the experimental observations, which points out the key factors for controlling the polarization of N2+ lasing.Comment: 12 pages, 4 figure

    Amplification of light pulses with orbital angular momentum (OAM) in nitrogen ions lasing

    Full text link
    Nitrogen ions pumped by intense femtosecond laser pulses give rise to optical amplification in the ultraviolet range. Here, we demonstrated that a seed light pulse carrying orbital angular momentum (OAM) can be significantly amplified in nitrogen plasma excited by a Gaussian femtosecond laser pulse. With the topological charge of +1 and -1, we observed an energy amplification of the seed light pulse by two orders of magnitude, while the amplified pulse carries the same OAM as the incident seed pulse. Moreover, we show that a spatial misalignment of the plasma amplifier with the OAM seed beam leads to an amplified emission of Gaussian mode without OAM, due to the special spatial profile of the OAM seed pulse that presents a donut-shaped intensity distribution. Utilizing this misalignment, we can implement an optical switch that toggles the output signal between Gaussian mode and OAM mode. This work not only certifies the phase transfer from the seed light to the amplified signal, but also highlights the important role of spatial overlap of the donut-shaped seed beam with the gain region of the nitrogen plasma for the achievement of OAM beam amplification.Comment: 10 pages, 7 figure

    Structured air lasing of N2+

    Full text link
    Structured light has attracted great interest in scientific and technical fields. Here, we demonstrate the first generation of structured air lasing in N2+ driven by 800 nm femtosecond laser pulses. By focusing a vortex pump beam at 800 nm in N2 gas, we generate a vortex superfluorescent radiation of N2+ at 391 nm, which carries the same photon orbital angular momentum as the pump beam. With the injection of a Gaussian seed beam at 391 nm, the coherent radiation is amplified, but the vorticity is unchanged. A new physical mechanism is revealed in the vortex N2+ superfluorescent radiation: the vortex pump beam transfers the spatial spiral phase into the N2+ gain medium, and the Gaussian seed beam picks up the spatial spiral phase and is then amplified into a vortex beam. Moreover, when we employ a pump beam with a cylindrical vector mode, the Gaussian seed beam is correspondingly amplified into a cylindrical vector beam. Surprisingly, the spatial polarization state of the amplified radiation is identical to that of the vector pump beam regardless of whether the Gaussian seed beam is linearly, elliptically, or circularly polarized. Solving three-dimensional coupled wave equations, we show how a Gaussian beam becomes a cylindrical vector beam in a cylindrically symmetric gain medium. This study provides a novel approach to generating structured light via N2+ air lasing.Comment: 18 pages, 5 figures, 3 equation

    Prompt-to-afterglow transition of optical emission in a long gamma-ray burst consistent with a fireball

    Full text link
    Long gamma-ray bursts (GRBs), which signify the end-life collapsing of very massive stars, are produced by extremely relativistic jets colliding into circumstellar medium. Huge energy is released both in the first few seconds, namely the internal dissipation phase that powers prompt emissions, and in the subsequent self-similar jet-deceleration phase that produces afterglows observed in broad-band electromagnetic spectrum. However, prompt optical emissions of GRBs have been rarely detected, seriously limiting our understanding of the transition between the two phases. Here we report detection of prompt optical emissions from a gamma-ray burst (i.e. GRB 201223A) using a dedicated telescope array with a high temporal resolution and a wide time coverage. The early phase coincident with prompt {\gamma}-ray emissions show a luminosity in great excess with respect to the extrapolation of {\gamma}-rays, while the later luminosity bump is consistent with onset of the afterglow. The clearly detected transition allows us to differentiate physical processes contributing to early optical emissions and to diagnose the composition of the jetComment: Authors' version of article published in Nature Astronomy, see their website for official versio

    An asymmetric upwind flow, Yellow Sea Warm Current : 1. New observations in the western Yellow Sea

    Get PDF
    Author Posting. © American Geophysical Union, 2011. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research 116 (2011): C04026, doi:10.1029/2010JC006513.The winter water mass along the Yellow Sea Trough (YST), especially on the western side of the trough, is considerably warmer and saltier than the ambient shelf water mass. This observed tongue-shape hydrographic feature implies the existence of a winter along-trough and onshore current, often referred to as the Yellow Sea Warm Current (YSWC). However, the YSWC has not been confirmed by direct current measurements and therefore skepticism remains regarding its existence. Some studies suggest that the presence of the warm water could be due to frontal instability, eddies, or synoptic scale wind bursts. It is noted that in situ observations used in most previous studies were from the central and eastern sides of the YST even though it is known that the warm water core is more pronounced along the western side. Data from the western side have been scarce. Here we present a set of newly available Chinese observations, including some from a coordinated effort involving three Chinese vessels in the western YST during the 2006–2007 winter. The data show unambiguously the existence of the warm current on the western side of YST. Both the current and hydrography observations indicate a dominant barotropic structure of YSWC. The westward deviation of YSWC axis is particularly obvious to the south of 35°N and is clearly associated with an onshore movement of warm water. To the north of 35°N, the YSWC flows along the bathymetry with slightly downslope movement. We conclude that the barotropic current is mainly responsible for the warm water intrusion, while the Ekman and baroclinic currents play an important but secondary role. These observations help fill an observational gap and establish a more complete view of the YSWC.The authors have been supported by China’s National Basic Research Priorities Programmer (2007CB411804 and 2005CB422303), the Ministry of Education’s 111 Project (B07036), the Program for New Century Excellent Talents in University (NECT‐07‐0781), and the China National Science Fundation (40976004, 40921004. and 40930844). J.Y. is supported by the U.S. National Science Foundation and the Woods Hole Oceanographic Institution’s Coastal Ocean Institute

    Structural, thermal, in vitro degradation and cytocompatibility properties of P2O5-B2O3-CaO-MgO-Na2O-Fe2O3 glasses

    Get PDF
    Borophosphate glasses with compositions of (48 − x)P2O5-(12 + x)B2O3-14CaO-20MgO-1Na2O-5Fe2O3 (where x = 0, 3, 8 mol%) were prepared via a melt-quenching process. The effects of replacing P2O5 with B2O3 on the structural, thermal, degradation properties and cytocompatibility were investigated. Fourier transform infrared (FTIR) spectroscopy analysis confirmed the existence of BO3 triangular units and BO4 tetrahedral units within all the glasses with an increase of B/P ratio from 0.25 to 0.5. The BO4 units within the glass structure were observed to cause an increase in density (ρ) as well as glass transition (Tg) temperature and to decrease the crystallisation temperature (Tc). A decrease in thermal stability which indicated by process window was also observed in the case of substitution of P2O5 with B2O3. Degradation analysis of the glasses indicated that the dissolution rate increased with the addition of B2O3. The decrease in the thermal stability and chemical durability were attributed to the increase of BO3 units, which could increase crystallisation tendency and be easily hydrolysed by solution. The effect of boron addition on the cytocompatibility of the glasses was analysed using Alamar Blue and alkaline phosphatase (ALP) assays and DNA quantification. MG63 osteosarcoma cells cultured in direct contact with the glass samples surface for 14 days showed better cytocompatibility, compared to the tissue culture plastic (TCP) control group. In summary, the glass formulation with 12 mol% B2O3 presented the best cytocompatibility and thermal stability, thus could be considered for continuous fibre fabrication in future research and downstream activities

    What Makes It Findable?: An Exploration on User Search Behavior and the Findability of Technical Documentation

    Get PDF
    This paper was presented at the Invited Panel session “Technical Communication in China”. Findability is one of the most important qualitative factors of websites. With the rapid growth in navigation complexity and in number of technical documentations in help centers, whether users can easily locate the target document could directly determine the information retrieval task outcome. Providing users with a fine guide to target documents and then helping them find solutions to their problems is the most important function of a help center. Investigation on user search behavior data and perceived findability of documentation has to be done in order to further apply website log data to predicting user subjective assessment. In this paper we analyze the correlation between subjective document findability, subjective task complexity, and user search behavior. We found several search behavior metrics which significantly correlate with the two subjective measures above
    corecore