Controlling the polarization of nitrogen ion lasing

Abstract

Air lasing provides a promising technique to remotely produce coherent radiation in the atmosphere and attracts continuous attention. However, the polarization properties of N2+ lasing with seeding has not been understood since it was discovered ten years ago, in which the behaviors appear disordered and confusing. Here, we performed an experimental and theoretical investigation on the polarization properties of N2+ lasing and successfully revealed its underlying physical mechanism. We found that the optical gain is anisotropic owing to the permanent alignment of N2+ induced by the preferential ionization of the pump light. As a result, the polarization of N2+ lasing tends to align with that of the pump light after amplification, which becomes more pronounced with increasing amplification factor. Based on the permanent alignment of N2+, we built a theoretical model that analytically interpreted and numerically reproduced the experimental observations, which points out the key factors for controlling the polarization of N2+ lasing.Comment: 12 pages, 4 figure

    Similar works

    Full text

    thumbnail-image

    Available Versions