5,307 research outputs found

    Automatic design of deterministic and non-halting membrane systems by tuning syntactical ingredients

    Get PDF
    To solve the programmability issue of membrane computing models, the automatic design of membrane systems is a newly initiated and promising research direction. In this paper, we propose an automatic design method, Permutation Penalty Genetic Algorithm (PPGA), for a deterministic and non-halting membrane system by tuning membrane structures, initial objects and evolution rules. The main ideas of PPGA are the introduction of the permutation encoding technique for a membrane system, a penalty function evaluation approach for a candidate membrane system and a genetic algorithm for evolving a population of membrane systems toward a successful one fulfilling a given computational task. Experimental results show that PPGA can successfully accomplish the automatic design of a cell-like membrane system for computing the square of n ( n >/= 1 is a natural number) and can find the minimal membrane systems with respect to their membrane structures, alphabet, initial objects, and evolution rules for fulfilling the given task. We also provide the guidelines on how to set the parameters of PPGA

    Biomechanics of <i>Machaeracanthus</i> pectoral fin spines provide evidence for distinctive spine function and lifestyle among early chondrichthyans

    Get PDF
    Acanthodians are a major group of Paleaozoic jawed vertebrates that constitute a paraphyletic assemblage of stem-chondrichthyans (Brazeau and Friedman, 2015). Representatives of this group are characterized, among other traits, by the presence of bony spines in front of all paired and median fins except the caudal (Denison, 1979), which has given rise to their colloquial name of 'spiny sharks'. The occurrence of pectoral fin spines is recognized as a potential gnathostome synapomorphy (Miller et al., 2003) or symplesiomorphy (Coates, 2003), being also present in other major groups of Paleaozoic jawed vertebrates, including placoderms (Young, 2010), 'non-acanthodian' chondrichthyans (Miller et al., 2003), and osteichthyans (Zhu et al., 1999). However, this trait was independently lost in the later evolutionary history of these lineages and is absent in most living representatives (Coates, 2003; Miller et al., 2003), with the exception of catfishes (Siluriformes), that acquired pectoral fin spines as an evolutionary reversion (Price et al., 2015). As a consequence, the paucity of living analogsue precludes deriving functional interpretations of those structures and the role that they fulfilled in life remains unclear, despite this having the potential to enrich our understanding on the ecologies and lifestyles of groups of early jawed vertebrates. Machaeracanthus constitutes a genus of acanthodians that ranged from the Late Silurian to the Middle Devonian, which is known from fin spines, scales, and a few endoskeletal remains (Burrow et al., 2010; Botella et al., 2012). The spines of this genus differ from the fin spines of all other acanthodians and sharks in presenting a marked cross-sectional asymmetry and a totally enclosed central canal, which is usually open along the proximal end of the trailing edge in other taxa (Burrow et al., 2010). The description of wear patterns at the tips of pectoral fin spines of Machaeracanthus and their peculiar arrangement in pairs has led some authors to propose that these elements could have been used as 'snow-shoes' to lay on and prevent sinking into the substrate below or even to propel itself along the bottom (Südkamp and Burrow, 2007). Here, we test this hypothesis through beam theory analyses and provide evidence that the biomechanical properties of Machaeracanthus pectoral fin spines are compatible with this interpretation, thus shedding light on the diversity of the functions of these intriguing anatomical structures and the lifestyles of some of the earliest jawed vertebrates

    Effect of self-healing additions on the development of mechanical strength of cement paste

    Get PDF
    Important research efforts have been recently focused on the development of self-healing cement composites. The healing mechanism, implemented within the material, must be automatically initiated as soon as the first signs of damage appear at the micro-scale. For doing so, two different additions have been developed to incorporate them simultaneously into the cementitious matrix: silica microcapsules containing an epoxy sealing compound (CAP) and nanosilica particles functionalized with amine groups (NS). As a first step to the development of a self-healing concrete with these two additions, their pozzolanic activity has been measured by an accelerated test. The high values of fixed lime obtained at 28 days (85% for CAP, 93% for NS and 88% for a mix of them) suggest that they are suitable for construction materials’ applications. Furthermore, the behaviour of the additions in an ordinary Portland cement paste with 20 wt.% of commercial micro-silica has been studied, considering the partial substitution of micro-silica by CAP, NS and their mix. High values of compressive strength (&gt;60 MPa) have been obtained in all cases after 28 days of hydration. However, while the addition of CAP induces a reduction of the compressive strength of the 24% with respect to the reference material, the addition of NS gives rise to a slight enhancement of the strength (5%) due to a pozzolanic reaction confirmed by X-ray diffraction data. Finally, in the presence of both CAP and NS, the beneficial effect of the nanosilica is counteracted by the microcapsules and a reduction of 28% is obtained for the compressive strength

    An Upper Limit on the Temporal Variations of the Solar Interior Stratification

    Get PDF
    We have analyzed changes in the acoustic oscillation eigenfrequencies measured over the past 7 years by the GONG, MDI and LOWL instruments. The observations span the period from 1994 to 2001 that corresponds to half a solar cycle, from minimum to maximum solar activity. These data were inverted to look for a signature of the activity cycle on the solar stratification. A one-dimensional structure inversion was carried out to map the temporal variation of the radial distribution of the sound speed at the boundary between the radiative and convective zones. Such variation could indicate the presence of a toroidal magnetic field anchored in this region. We found no systematic variation with time of the stratification at the base of the convection zone. However we can set an upper limit to any fractional change of the sound speed at the level of 3×1053 \times 10^{-5}.Comment: 11 pages, 5 figures, to appear in Ap

    Training machine learning models with synthetic data improves the prediction of ventricular origin in outflow tract ventricular arrhythmias

    Get PDF
    In order to determine the site of origin (SOO) in outflow tract ventricular arrhythmias (OTVAs) before an ablation procedure, several algorithms based on manual identification of electrocardiogram (ECG) features, have been developed. However, the reported accuracy decreases when tested with different datasets. Machine learning algorithms can automatize the process and improve generalization, but their performance is hampered by the lack of large enough OTVA databases. We propose the use of detailed electrophysiological simulations of OTVAs to train a machine learning classification model to predict the ventricular origin of the SOO of ectopic beats. We generated a synthetic database of 12-lead ECGs (2,496 signals) by running multiple simulations from the most typical OTVA SOO in 16 patient-specific geometries. Two types of input data were considered in the classification, raw and feature ECG signals. From the simulated raw 12-lead ECG, we analyzed the contribution of each lead in the predictions, keeping the best ones for the training process. For feature-based analysis, we used entropy-based methods to rank the obtained features. A cross-validation process was included to evaluate the machine learning model. Following, two clinical OTVA databases from different hospitals, including ECGs from 365 patients, were used as test-sets to assess the generalization of the proposed approach. The results show that V2 was the best lead for classification. Prediction of the SOO in OTVA, using both raw signals or features for classification, presented high accuracy values (>0.96). Generalization of the network trained on simulated data was good for both patient datasets (accuracy of 0.86 and 0.84, respectively) and presented better values than using exclusively real ECGs for classification (accuracy of 0.84 and 0.76 for each dataset). The use of simulated ECG data for training machine learning-based classification algorithms is critical to obtain good SOO predictions in OTVA compared to real data alone. The fast implementation and generalization of the proposed methodology may contribute towards its application to a clinical routine.Copyright © 2022 Doste, Lozano, Jimenez-Perez, Mont, Berruezo, Penela, Camara and Sebastian

    Transcriptome Metabolic Characterization of Tuber borchii SP1—A New Spanish Strain for In Vitro Studies of the Bianchetto Truffle

    Get PDF
    Truffles are ascomycete hypogeous fungi belonging to the Tuberaceae family of the Pezizales order that grow in ectomycorrhizal symbiosis with tree roots, and they are known for their peculiar aromas and flavors. The axenic culture of truffle mycelium is problematic because it is not possible in many cases, and the growth rate is meager when it is possible. This limitation has prompted searching and characterizing new strains that can be handled in laboratory conditions for basic and applied studies. In this work, a new strain of Tuber borchii (strain SP1) was isolated and cultured, and its transcriptome was analyzed under different in vitro culture conditions. The results showed that the highest growth of T. borchii SP1 was obtained using maltose-enriched cultures made with soft-agar and in static submerged cultures made at 22 °C. We analyzed the transcriptome of this strain cultured in different media to establish a framework for future comparative studies, paying particular attention to the central metabolic pathways, principal secondary metabolite gene clusters, and the genes involved in producing volatile aromatic compounds (VOCs). The results showed a transcription signal for around 80% of the annotated genes. In contrast, most of the transcription effort was concentrated on a limited number of genes (20% of genes account for 80% of the transcription), and the transcription profile of the central metabolism genes was similar in the different conditions analyzed. The gene expression profile suggests that T. borchii uses fermentative rather than respiratory metabolism in these cultures, even in aerobic conditions. Finally, there was a reduced expression of genes belonging to secondary metabolite clusters, whereas there was a significative transcription of those involved in producing volatile aromatic compounds

    Hybrid Catalysts Comprised of Graphene Modified with Rhodium-Based N-Heterocyclic Carbenes for Alkyne Hydrosilylation

    Get PDF
    Thermally partially reduced graphene oxide has been covalently modified with 3-methyl-4-phenyl-1, 2, 3-triazolium salts making use of the epoxy functionalities on the carbon nanomaterial. Characterization of the functionalized materials through adequate solid characterization techniques, particularly X-ray photoelectron spectroscopy (XPS), allows one to follow the stepwise building up of the triazolium fragments on the graphene oxide attached to the wall via covalent C-N linkage. The hydroxyl-triazolium-functionalized materials have been used to prepare rhodium hybrid materials containing either alkoxo or triazolylidene molecular rhodium(I) complexes depending on the protection of the hydroxyl groups present in the material. Characterization of the heterogeneous systems, especially by means of XPS and extended X-ray absorption fine structure (EXAFS) spectroscopy, has evidenced the coordination sphere of the supported rhodium(I) complexes in both rhodium hybrid materials. The graphene-oxide-supported rhodium triazolylidene hybrid catalysts show excellent activity, comparable to that of the homogeneous [RhI(cod)(Triaz)] (Triaz = 1, 4-diphenyl-3-methyl-1, 2, 3-triazol-5-ylidene) catalyst, for the hydrosilylation of terminal and internal alkynes. In addition, these catalysts have shown good selectivity to the beta-(Z) vinylsilane isomers (for the not hindered terminal substrates) or syn-additions (for the internal substrates). In contrast to the rhodium(I)-alkoxo-based hybrid material, the silyl-protected rhodium(I)-triazolylidene-based hybrid catalyst can be reused in consecutive cycles without loss of activity maintaining the selectivity. The lack of leaching of active rhodium species demonstrates the strength of the C-N covalent bond of the triazolylidene linker to the graphitic wall

    The Complete Star Formation History of the Universe

    Full text link
    The determination of the star-formation history of the Universe is a key goal of modern cosmology, as it is crucial to our understanding of how structure in the Universe forms and evolves. A picture has built up over recent years, piece-by-piece, by observing young stars in distant galaxies at different times in the past. These studies indicated that the stellar birthrate peaked some 8 billion years ago, and then declined by a factor of around ten to its present value. Here we report on a new study which obtains the complete star formation history by analysing the fossil record of the stellar populations of 96545 nearby galaxies. Broadly, our results support those derived from high-redshift galaxies elsewhere in the Universe. We find, however, that the peak of star formation was more recent - around 5 billion years ago. Our study also shows that the bigger the stellar mass of the galaxy, the earlier the stars were formed. This striking result indicates a very different formation history for high- and low-mass formation.Comment: Accepted by Nature. Press embargo until publishe

    Fusarium Mycotoxins and Metabolites that Modulate Their Production

    Get PDF
    The genus Fusarium is a group of fungi producing several types of toxins with toxicological effect in both humans and animals. Such fungi are commonly found in soils so it can contaminate various types of crops, preferably cereals, leading to significant economic losses. Relative humidity, storage temperature and various handling in cereales increase the possibility of contamination by Fusarium toxins. Cereals naturally have secondary metabolites that may help attenuate contamination by these toxins, but it is necessary to know strategies and mechanisms that generate inactivation mycotoxins. This chapter reviews relevant information about cereal mycotoxin contamination, as well as the production of cereal secondary metabolites as a strategy to reduce the possibility of mycotoxin contamination

    Ianus: an Adpative FPGA Computer

    Full text link
    Dedicated machines designed for specific computational algorithms can outperform conventional computers by several orders of magnitude. In this note we describe {\it Ianus}, a new generation FPGA based machine and its basic features: hardware integration and wide reprogrammability. Our goal is to build a machine that can fully exploit the performance potential of new generation FPGA devices. We also plan a software platform which simplifies its programming, in order to extend its intended range of application to a wide class of interesting and computationally demanding problems. The decision to develop a dedicated processor is a complex one, involving careful assessment of its performance lead, during its expected lifetime, over traditional computers, taking into account their performance increase, as predicted by Moore's law. We discuss this point in detail
    corecore