-

View metadata, citation and similar papers at core.ac.uk brought to you by .i CORE

provided by Bradford Scholars

@] UNIVERSITY of

0% BRADFORD Library

The University of Bradford Institutional
Repository

http://bradscholars.brad.ac.uk

This work is made available online in accordance with publisher policies. Please refer to the
repository record for this item and our Policy Document available from the repository home
page for further information.

To see the final version of this work please visit the publisher’s website. Available access to
the published online version may require a subscription.

Link to conference webpage: https.//doi.org/10.1109/TNB.2014.2341618

Citation: Zhang, G., Rong, H., Ou, Z., Perez-Jimenez, M.J. and Gheorghe, M. (2014) Automatic
design of deterministic and non-halting membrane systems by tuning syntactical ingredients.
IEEE Transactions on Nanobioscience. 13 (3), 363-71.

Copyright statement: © 2014 IEEE. Personal use of this material is permitted. Permission from
IEEE must be obtained for all other uses, in any current or future media, including
reprinting/republishing this material for advertising or promotional purposes, creating new
collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted
component of this work in other works.

https://core.ac.uk/display/153514595?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://doi.org/10.1109/TNB.2014.2341618

Automatic Design of Deterministic and Non-Halting
Membrane Systems by Tuning Syntactical Ingredients

Gexiang Zhang*, Member, IEEE, Haina Rong, Zhu Ou, Mario J. Pérez-Jiménez, and Marian Gheorghe

Abstract—To solve the programmability issue of membrane
computing models, the automatic design of membrane systems is
a newly initiated and promising research direction. In this paper,
we propose an automatic design method, Permutation Penalty
Genetic Algorithm (PPGA), for a deterministic and non-halting
membrane system by tuning membrane structures, initial objects
and evolution rules. The main ideas of PPGA are the introduction
of the permutation encoding technique for a membrane system,
a penalty function evaluation approach for a candidate mem-
brane system and a genetic algorithm for evolving a population
of membrane systems toward a successful one fulfilling a given
computational task. Experimental results show that PPGA can
successfully accomplish the automatic design of a cell-like mem-
brane system for computing the square of n (» > 1 is a natural
number) and can find the minimal membrane systems with re-
spect to their membrane structures, alphabet, initial objects, and
evolution rules for fulfilling the given task. We also provide the
guidelines on how to set the parameters of PPGA.

Index Terms—Automatic design, cell-like membrane systems,
genetic algorithm, membrane computing, penalty function evalu-
ation approach, permutation encoding technique.

I. INTRODUCTION

EMBRANE computing, initiated by Paun in 1998

[1], aims to investigate the models, called membrane
systems or P systems, abstracted from the structure and the
functioning of the living cell as well as from the cooperation
of cells in tissues, organs, and other populations of cells. Since
it was reported in 2003 by Thompson Institute for Scientific
Information, ISI, that the seminal paper was a fast breaking
one and this area was an emerging research front in computer
science, membrane computing has become a branch of natural
computing and has developed very fast into a vigorous scien-
tific discipline [2].

Manuscript received September 06, 2013; revised May 27, 2014; accepted
July 08, 2014. Date of publication July 30, 2014; date of current version
September 23, 2014. This work was supported by the National Natural Science
Foundation of China (61170016, 61373047, 61134002), the Program for
New Century Excellent Talents in University (NCET-11-0715) and SWITU
supported project (SWITU12CX008). Asterisk indicates corresponding author.

*@. Zhang is with the School of Electrical Engineering, Southwest Jiaotong
University, Chengdu, 610031 China (e-mail: zhgxdylan@126.com).

H. Rong and Z. Ou are with the School of Electrical Engineering, South-
west Jiaotong University, Chengdu, 610031 China (e-mail: ronghaina@126.
com; 994345836(@qq.com).

M. J. Pérez-Jiménez is with the Department of Computer Science and Artifi-
cial Intelligence, University of Sevilla, Avda. Reina Mercedes s/n, 41012, Spain
(e-mail: marper@us.es).

M. Gheorghe is with the Department of Computer Science, University of
Sheffield, Regent Court, Portobello Street, Sheffield S1 4DP, UK (e-mail:
m.gheorghe@sheffield.ac.uk).

Digital Object Identifier 10.1109/TNB.2014.2341618

The P systems in the literature can be structurally grouped
into two types: cell-like and tissue-like P systems. The former
contains one membrane cell with three main ingredients: a hi-
erarchical membrane structure represented by a tree, multisets
of objects and evolution rules. The latter, such as tissue, neural,
and numerical P systems [2], [3], has a general graph membrane
structure. Various variants of P systems can provide an expo-
nential space for solving NP-hard problems in a linear time [4]
and have a wide range of applications, such as the construction
of optimization approaches [5], arithmetic operations [6] and
controller design for mobile robots [7]. Until now, a P system
for fulfilling a specific task, especially for solving an NP-hard,
NP-complete or PSPACE problem or for controlling robots, is
carefully designed by experts and cannot be automatically ob-
tained by using programs, which extremely limits the applica-
tion of P systems. How to automatically design a P system by
using programs, namely, the programmability of a P system, is
a new and ongoing research direction in the area of membrane
computing.

The automatic design of a P system is a very complicated
and challenging task. Now, a feasible way is to use evolu-
tionary algorithms to evolve a population of P systems toward
a successful one. This work started with the selection of an
appropriate subset from a redundant set of evolution rules to
design a cell-like P system, where a membrane structure and
initial objects were pre-defined and fixed in the process of
design [8]-[12]. In [8], a genetic algorithm (GA) was used
to design the P system for calculating 42. In this design, no
encoding technique, such as binary and numeric, was used to
represent a P system. The one-point crossover was performed
on two evolution rule sets, that is, partial rules of the two
evolution rule sets were exchanged. The uniform mutation
was applied to change a random object in a randomly chosen
evolution rule. In [9], a binary encoding technique was intro-
duced to represent an evolution rule set of a P system and a
quantum-inspired evolutionary algorithm (QIEA) was applied
to evolve a population of P systems. This method successfully
solved the design of P systems for computing 42 and n? (n > 2
is a natural number). In [10], an evaluation method considering
non-determinism and halting penalty factors and a GA with a
binary encoding technique was presented to design P systems
for 42, n? and the generation of the language > *" (n > 1).In
[8]-[10], a specific redundant evolution rule set was designed
for a specific computational task. This case was developed in
[11], [12] by using one pre-defined redundant evolution rule
set to design multiple different P systems, each of which per-
forms a computation task. In [11], an automatic design method
of a cell-like P system framework for performing five basic

arithmetic operations (addition, subtraction, multiplication,
division, and power) was discussed. In [12], a common redun-
dant set of evolution rules was applied to design successful
P systems for fulfilling eight computational tasks: 2(n — 1),
2n — 1, n2, (1/2)[(n — D2+ (n = 1)), (n — 1)2 4+ (n — 1),
(n—1)2 42" 42,626 and (1/2)(3" — 1), (n > 1 or
2). A significant step in this direction is the study in [13] that
a cell-like halting P system for 42 was designed by tuning
membrane structures, initial objects, and evolution rules. In this
method, a GA with a binary encoding technique was introduced
to codify the membrane structure, initial objects, and evolution
rules of a P system.

To advance the automatic design of a P system, this paper
proposes an automatic design method, Permutation Penalty Ge-
netic Algorithm (PPGA), for a deterministic and non-halting P
system by tuning membrane structures, initial objects and evo-
lution rules. We discuss the parameter setting of PPGA and con-
duct extensive experiments to verify the PPGA feasibility and
effectiveness. The original work in this study is summarized as
follows:

1) An automatic design method for a deterministic and non-
halting membrane system by tuning membrane structures,
initial objects, and evolution rules is presented for the first
time.

2) In PPGA, the permutation encoding technique for repre-
senting a cell-like P system is introduced. This technique
can overcome the drawback of the binary encoding method
in [13] that a certain number of copies of the empty set A
are inserted into the binary strings of a membrane struc-
ture, initial object set and evolution rule set, which results
in the use of the objects in V' by unequal probabilities and
the production of many infeasible P systems in the process
of crossover and mutation.

3) A penalty function evaluation approach of a candidate P
system is discussed by considering the feasibility of a P
system due to its membrane structure and dissolution rules,
the redundancy of objects and evolution rules, non-deter-
minism, and halting feature.

4) The first attempt to consider the rewriting-communication
rule in the automatic design methods is made.

5) How to design the minimal P system with respect to its
membrane structure, alphabet, initial objects, and evolu-
tion rules is discussed.

The rest of this paper is organized as follows. Section II
describes the problem to solve. Section III presents the de-
sign method PPGA. Experiments and results are provided in
Section IV. Finally, some conclusions are drawn in Section V.

II. PROBLEM DESCRIPTION

This study considers the automatic design of a P system for
successfully generating the set {n?|n > 1} of natural numbers,
where 7 is a natural number greater than or equal to 1. The
system must have the following characteristics:

1) The system is a cell-like P system with a hierarchical mem-

brane structure and can be formally represented as

= (V,0,u,W,R,i,)

where

a) V is the (finite and non-empty) alphabet of objects.
From the perspective of P systems, the alphabet V' is
usually fixed by the user and the objects in V' usu-
ally have implicit meanings, for instance, they may be
thought as proteins, predators, or clauses, according
to the purpose of the P system.

b) O C V is the output alphabet, namely, the set of
output objects.

¢) is a hierarchical membrane structure with m > 1
membranes labeled by the elements of a given set H,
H = {0,1,...,m — 1}, and the skin membrane is
labeled as 0. The hierarchical membrane structure can
also be depicted through a rooted tree.

d) W is the vector of initial multisets wy, ..., W, _1
over V associated with the regions 0,1,...,m — 1
delimited by the membranes of p, namely,
W = [’LU(), PN ?’wmfl].

e) R is the set of finite sets Ry,...,R,,_1 of

evolution rules associated with the regions
0,1,...,m—1 of the membrane structure u, namely,
R = {Ro,...,Rm_1}. Three types of evolution
rules, rewriting, dissolution and rewriting-commu-
nication rules, are considered in this study, that is,
R; o = 0,1,...,m — 1) has rules of one of the
following forms:
i) rewriting rule: [u — vl;;

ii) dissolution rule: [u); — v;

iii) rewriting-communication rule: [u]; — [v];x;
wherei € H;u € V; v,z € V*;, where V* denotes
the set of all strings over V. The left hand side of these
rules is w and the right hand side of them is v or v, .
The length of w is called the radius of each rule. Our
design considers the case that the radius of the three
rules equals 1. The rewriting rule [u — v]; rewrites
u by v. The dissolution rule [«]; — v dissolves the
compartment ¢ and its content is transferred to the
surrounding membrane after all the other rules have
been applied and u is replaced by v. The rewriting-
communication rule [u]; — [v];x rewrites u by v
inside the compartment ¢ and, in the same time, sends
x outside the compartment.

f) 1, is the output membrane of II. In this study, ¢, = 0,
namely, the output results will be collected inside the
skin membrane.

2) The system is non-cooperative, that is, the length of the
object in the left hand side of an evolution rule is one.

3) The system is deterministic and non-halting. Thus, non-de-
terministic membrane systems will not be removed in this
design and the target P systems will stop if no termination
condition is predefined.

The aim of the design is to obtain a successful P system with
the above features through tuning the syntactical ingredients
1, W and R.

A concise description on the P system for fulfilling a compu-
tational task is as follows. The multisets associated to regions
form a configuration of the P system. The computation begins
by treating the initial multisets, w;, 0 < ¢ < m — 1, and then

0
1
=)
Fig. 1. An example for a cell-like P system membrane structure and its asso-
ciated tree.

the system will go from one configuration to a new one by ap-
plying the evolution rules associated to regions in a determin-
istic and maximally parallel way, namely, all the objects that
may be transformed or communicated must be dealt with. The
system will halt when no more rules are available to be applied.
A computation is a sequence of configurations obtained as it
is described above, starting with the initial configuration and
ending with the configuration when the system halts. The result
of a computation, a multiset of objects, is obtained in the output
region, ¢,. For more details about P systems description see [2].

III. DESIGN METHOD

To design a P system with the prescribed requirements, it is
necessary to consider the following three points: representation
of a P system, evaluation of a candidate P system, and evolu-
tion of a family of P systems toward the expected result. In this
section, we propose a P system permutation encoding represen-
tation, a penalty function evaluation of a candidate P system,
and a genetic algorithm for the P system evolution toward the
expected result. In what follows, we first present the three tech-
niques and then we summarize the design method to provide an
algorithmic elaboration.

A. Representation of P Systems

In this study, we use the permutation encoding technique [14]
to codify a P system. The representation of a P system consists
of the encoding approaches for the alphabet V, its membrane
structure 1, the initial multiset vector W, evolution rules set R
and an individual chromosome corresponding to a candidate P
system. In what follows, we describe these approaches one by
one.

1) Encoding of V : Suppose that there are Ny objects (let-
ters), we use Vy strictly positive integers to represent the ob-
jects and 0 to denote the empty set A. Thus, V' is encoded as an
ordered string of numbers, namely, “01 ... Ny”. For instance,
if V = {a,b, ¢}, its codes are “0123.”

2) Encoding of ;1: The hierarchical membrane structure of a
cell-like P system can also be denoted as a rooted tree. Thus, we
can use the label of the parent (the neighboring outer membrane,
like the parent of a node in a tree) of each membrane to form
an ordered string to represent a P system structure. It is worth
noting that the skin membrane is not considered in the string
because it is the outermost membrane in the structure. Thus,
the hierarchical membrane structure of the P system with IV,
membranes is represented with a string with (N, — 1) numbers.
For example, the structure in Fig. 1 can be represented as the
codes “0001136.”

3) Encoding of W : Each elementw;,¢ =0,1,....m—1,of

the vector W are strings over V. The encoding approach of W

is designed according to the encoding technique of V. Suppose
that the largest number of objects in w; is V,,,, so w; needs
N,,, codes, each of which may be 0,1,..., or Ny-. The codes
of W can be obtained by concatenating the string of w;, ¢ =
0,1,...,m—1,and a separator symbol N +4 is used to delimit
the codes of w; and w;+31,¢ = 0,1,...,m — 2. Thus, the total
number Ly of codes for W is

m—1

Ly = Z Ny, +m —1.

i=0

Q)

For example, W = [wyg, w1, wo] is the initial multiset vector of
a P system. N,,, = A\, Ny, = aa, Ny, = bbcc. Thus, Ly =9
and the string for encoding W is “071172233.”

4) Encoding of ®: The left hand side and the right hand
side v of the rule (rewriting, dissolution or rewriting-communi-
cation rule) are elements of V' and V*, respectively. On the basis
of the representation of V', we can encode the set . Suppose
that the number of rules in R; is N, =0,1,...,m — 1, and
the largest numbers of objects in the left hand side # and in the
right hand side v of a rule are V; and N,., respectively. Thus, we
use V; codes, each of which may be 1. 2, .. ., or Ny, N,. codes,
each of which may be 0. 1,. . ., or Ny, and additional one code
to describe its rule type (here we use Ny +1, Ny +2 and Ny +3
denote a rewriting, dissolution, and rewriting-communication
rules, respectively) to encode a rule. Thus, the code length Ly,
for the rule is N; + N, + 1, namely, Lr, = N;+ N, + 1. The
codes of R can be gained by concatenating the string of each
rule and by using a separator symbol Ny + 5 between R; and
Riy1,i=0,1,...,m — 2. So the total code length Ly of the
set R is

m—1

Ly = Z (Ng, *Lg,)+m — L.
=0

2

It is worth noting that the dissolution rule is a structural rule,
which is applied at most one at each step of a P system evolu-
tion, and rewriting and rewriting-communication rules can be
normally applied in a maximally parallel mode.

For instance, we encode the set ® = {Rg, R1,Ra},
where Rg = {[e — aab].[b — ¢}, B1 = {[oe —
cel,[b] — [bla} and Ro = {[a] — bc}, as the code string
“11124233481334221681235.”

5) Encoding of a P System: In this study, we design a P
system through tuning membrane structure, initial objects and
evolution rules, thus, the codes for the P system can be attained
by sequentially concatenating the codes of 1+, W and R, and a
separator symbol Ny + 6 to enable the separation of the codes
of 1, W and R. We illustrate the encoding of a P system with
the following example. Consider the following P system:

M. = (V,0, 1, W, R, i,)

where
)V = {s,ab};
2) O = {sh
3) w

= [[[]2[]s]1]o;
[

4) W = [wg, wy,wa, ws], wo = A, w1 = b, ws = a, w3 =b;

%G 3
o)

a
2
[[a]»[a]a
b

[b]—~sb

S

a—>sa
K b—sa j

Fig. 2. The initial configuration of IT. (with rules included).

5) R = {RQ,Rl,RQ,Rg},RO = {LL — sa,b — SLL}, R1 =
{b — sb}, Ry = {[a] — [a]a}, Rs = {[b] — [bla};

6) 2, = 0.
The initial configuration of the P system II. is illustrated in
Fig. 2. If Nyyy = Ny, = Ny, = Ny, = 1, Np, = 2,
Ngp, = Np, = Np, =1, Ny =1, N, = 2and Lp, = 4,
(z = 0,1, 2, 3), the P system II. is encoded as the string
“01190323921243124831358222683326.”

B. Evaluation of P Systems

How to evaluate a candidate P system is a crucial step in the
automatic design of membrane systems by using evolutionary
algorithms. This step has a direct effect on the characteristics
of the P systems obtained and the performance of the design
algorithm. In the evaluation, we consider the following seven
aspects:

1) The difference between the actual number(s) and the ex-

pected number(s) of output objects. The former refers to
the simulated result that is returned from the specialized P
system simulation software, P-Lingua [15], [16], through
inputting a candidate P system into the software. The latter
is designated by the designer according to the computa-
tional task or the problem to solve.

2) The feasibility of a P system due to its membrane struc-
ture p. In the design, some infeasible membrane structures
may be generated by the evolutionary operations such as
crossover or mutation in a genetic algorithm. The infea-
sible membrane structure refers to the one that does not sat-
isfy the syntactical requirement of the P system described
in Section II.

3) The redundancy of objects in the initial multiset vector
W . In this design, some objects exist in the initial multiset
vector W, but they will not be used through the computa-
tion of the P system. We call them redundant objects. This
redundancy results from the randomness of the generation
of the population of initial P systems in an evolutionary
algorithm.

4) The non-determinism of a P system resulting from non-
deterministic membrane systems due to evolution rules.

5) The infeasibility of a P system due to more than one disso-
lution rules inone set 12; (2 = 0,1,...,m — 1).

6) The redundancy of evolution rules in the set . The redun-
dant rules refer to the ones in the set 1t that are not used
through the computation of the P system.

7) A halting P system due to evolution rules.

It is worth pointing out that the further explanations for 2)—7)
will be described in Section III-D.

Based on the above analysis, we define the evaluation func-
tion as follows:

f=h+lh+h+fat+fs+fet+fz 3)
where
N,
fi=g1(Ny) = >IN - Ny°| ©)
i=1
f2=g2(p) =6 My (%)
fS = gS(VV> =1- Nobs (6)
f4 = 04(§R) = Nnvn, (7)
fs=95(R) =3 Rais ®)
fG = QG(SR) =7 jv’red (9)
fr=g(R)=¢-H (10)
where

— f1 is the object error function; g1 (N,) is the function of the
simulation step /V, of a candidate P system in the P-Lingua
software and is designed according to the computational
task; N and N are the actual number and the expected
number of the ¢th (= 1,2,..., N,;) output objects, re-
spectively; Nop; = |O]; Nopj is the number of distinct
letters involved in the output objects;

— fo is the penalty item of the infeasible membrane structure;
g2(1) is the function of the membrane structure y; 6 is a
penalty factor; My € {0, 1}, where “0” and “1” mean that
the membrane structure of a candidate P system is feasible
and infeasible, respectively;

— f3 is the penalty item of the redundant objects in the initial
multiset vector W; g3(W) is the function of the initial
multiset vector W'; 1 is a penalty factor; NV, is the number
of the redundant objects in the initial multiset vector W ;

— f4 is the penalty item of a non-deterministic P system;
g4(R) is a function of the set iN; o is a penalty factor;
Nyon € {0,1}, where “0” and “1” mean that there is not
any non-deterministic evolution rule and there is at least
one pair of non-deterministic evolution rules in the set &,
respectively;

— f5 is the penalty item of the dissolution rules; g5(R) is a
function of the set *; /3 is a penalty factor; Ry;s € {0,1},
where “0” and “1” mean that there is less than and at least
two dissolution rules in one set 12; (: = 0,1,....m — 1),
respectively;

— fs is the penalty item of the redundant rules; gg(R) is a
function of the set :; + is a penalty factor; N,y is the
number of the redundant rules in the set ¥t;

— f7 is the penalty item of the halting P system; g;(R) is a
function of the set ; & is a penalty factor; H € {0,1},
where “0” and “1” mean that the candidate P system is a
non-halting and halting one, respectively.

In (5)—(10), the introduction of the penalty factors 8, «v, 3, and
£ is to reject the unexpected candidate P systems and therefore
the five factors can be assigned as a larger value as possible, e.g.,
6 =a =0 =§ = 999999; while the use of the two factors 7

|01090323921243124831358222683326|
Parents:
|001 91123912342216833248231 58321d
Crossover point
|01191 12391 2342216833258231583214
Children:
|00090323921243 12483 1358222683326'

Fig. 3. One point crossover.

Parent: 101090323921[24312483135822268332¢|
Mutation point
01090323921[143124831358222683324]

Child:

Fig. 4. Uniform mutation.

and -y is to remove those candidate P systems having redundant
objects or evolution rules as possible as we could and accord-
ingly they can be prescribed as smaller values. The setting of
the two factors 77 and ~ will be discussed in Section IV-A.

C. Evolution of P Systems

In this study, we apply the genetic algorithm with the per-
mutation encoding technique (GAPE) in JGAP [17] to evolve a
family of P systems toward a successful one. GAPE uses the
elitist selection strategy, where twenty percent of individuals
with the best fitness values are selected to pass to the next gen-
eration, being free of the crossover and mutation operators. In
GAPE, one-point crossover and uniform mutation are used. We
use the representation of P systems in Section III-AS5 to illus-
trate the crossover operation, as shown in Fig. 3, where a single
crossover point except for separator symbols on both parents’
chromosome strings is selected and all codes beyond that point
in either chromosome string is swapped between the two parent
chromosomes, and the mutation operation, shown in Fig. 4,
where the value of the chosen gene (except for separator sym-
bols) with a uniform random value selected through the string of
a P system is replaced by any code in V. The resulting chromo-
somes are the children. The crossover and mutation operations
are performed by the probabilities P. and P,,, respectively.

It is worth noting that the evolutionary operators might
produce the P systems violating the constraints in (5)—(10)
including infeasible membrane structures g, more than one
dissolution rules in one set R; (¢ = 0,1,...,m — 1), the
redundancy of objects in the initial multiset vector W, the re-
dundancy of evolution rules in the set &, the non-deterministic
evolution rule pairs and the halting P system due to evolution
rules.

D. Algorithmic Elaboration

This subsection summarizes the design method PPGA as
shown in Fig. 5, where each step is described as follows:
1) This step consists of two processes: the setting of initial
parameter values and the generation of initial population.
The former process is used to set initial values for Ny N, ,
Ngp,,Lg,,» =0,1,....,m — 1, N;, N,, population size
Np, P. and P,,, 6, n, a, 3, 7y, &, the maximal number
MaxGen of evolutionary generations as the termination
condition of GAPE and the maximal number M az Step of

Begin
t<1
1) Initialization
‘While (not termination condition) do

2) Evaluation
3) Storage of the best solution
4) Selection
5) Crossover
6) Mutation

tt+1

End
End

Fig. 5. Pseudocode algorithm of PPGA.

2)

simulation steps for a P system in the P-Lingua software.
The latter process produces a population with Np individ-
uals, each of which corresponds to a candidate P system,
according to the representation described in Section III-A.
Each individual is evaluated by using Algorithm 1 and
thus, obtains its fitness. In Algorithm 1, the values of the
variables, My, Noys, Nyon, Ldis, Nyeq and H , depend on
the following constraint recognition techniques:

a)

b)

¢)

d)

Infeasible P systems due to infeasible membrane
structures: a P system is an infeasible one if it sat-
isfies one of the three conditions: (i) the parent
membrane of any one membrane is itself; (ii) the
system has not the skin membrane; (iii) two or more
membranes form a parent membrane loop, for ex-
ample, membrane 1 is the parent of membrane 2,
membrane 2 is the parent of membrane 3, and mem-
brane 3 is the parent of membrane 1;

Redundant objects: the objects in W do not appear in
the left hand side « of all evolution rules in .
Non-deterministic P systems have two cases: 1) two or
more evolution rulesin 2; (+ = 0,1,...,m— 1) have
the identical left hand side u; ii) two or more evolution
rulesin?; (: = 0,1, ..., m—1)canbe applied within
one transition, that is, the left hand side objects of two
or more evolution rules in I2; z = 0,1,...,m — 1)
can be provided in the current configuration.
Infeasible P systems due to dissolution rules: a P
system is an infeasible one if there are two or more
dissolution rules in 12; + = 0,1,...,m — 1) ac-
cording to the codes describing the rule types.
Redundant evolution rules: an evolution rule is redun-
dant in two cases: i) if the evolution rule in which all
the objects in the left hand side do not appear both in
the initial multiset and in the right hand side of any
one rule in the membrane; ii) if the evolution rule in
which the objects in the left hand side are identical
with those in the right hand side, and they are neither
the expected ones nor appear in the left hand side of
any rule in the membrane.

Halting P systems: if there is not any iterative
loop consisting of one or more evolution rules,
the system is a halting one. An iterative loop
may be one of the following cases: i) One evo-
Iution rule forms an iterative loop, that is, if one
evolution rule leftObj rightObj has the
feature leftObj C rightObj, the rule forms

—

an iterative loop; 1ii) Several evolution rules
form an iterative loop. If N;; evolution rules,
leftObj1 — rightObjr, leftObja — rightObjs,
leftObjs — rightObjs, ... leftObjy,, , —
rightObjn,,_,, leftObjn,, — rightObjy,,, have
the features, leftObja C rightObj1, le ftObjs C
rightObja, ... leftObjy, C rightObjn, .,
leftObj; C rightObjy,,, the rules form an iterative
loop.
3) The best solution and its corresponding P system are
stored.
4) The elitist selection strategy described in Section III-C is
considered.
5) The one-point crossover operator is used and depicted in
Section III-C.
6) The uniform mutation operator is employed and illustrated
in Section III-C.

il

Algorithm 1 Evaluation method

Input: A candidate P system

I:f <0

2: Compute My, Nobs, Nnon, Rais, Nred, H
3:if (Mg > 0) || (Nnon > 0) || (Rais > 0)) then
4 f—=h+fatls

5: else

6: N, <0

7: while (H < 1) A (Ns < MaxStep) do
8: Evolve the P system for one step

9: N — Ny +1

100 f<f+h

11: end while

12: if (H > 0) then

13: < I

14: end if

15: if (f = 0) then

16: f—=T++/

17: end if

18: end if

19: Output: Fitness f

IV. EXPERIMENTS AND RESULTS

In this section, the parameter setting of PPGA is first dis-
cussed; then an example is used to show the PPGA feasibility;
finally PPGA is applied to design the minimal P system with re-
spect to their membrane structures, alphabet, initial objects and
evolution rules for fulfilling a given computing task. All the fol-
lowing experiments are implemented on the platform Java and

100 600

80 {480
—_ (/2]
S 5
8 60r 60 ©
o 2
2 2y
8)
o 40 1240 ©
g [
@ z

20 1120

0’ 1 1 1 1 1 1 1 1 1 0
0 0.1 02 03 04 05 06 07 08 09 1

Mutation rates

Fig. 6. Experimental results of I°,,.

on a HP work station with Intel Xeon 2.93 GHz processor, 12
GB RAM and Windows 7 OS.

A. Parameter Setting

As described in Section III, six parameters, mutation prob-
ability P,,, crossover probability P., population size Np,
the maximal number MaxzGen of evolutionary generations,
two penalty factors # and v, in PPGA need to be discussed.
In what follows, we consider the P system II., as a design
example to discuss the parameter setting of PPGA to obtain
some guidelines.

Hﬁx = (Vvv 07 ey W ‘SRa LO)

where Ny = 3, namely, V' = {s,a,b}; O = {s}, N, = 4;
Nyy = Ny, = Ny, = Ny, =1, Ng, =2, Ng, = N, =

'R, =L, Ni=1,N, =2and Ly, =4,(:=0,1,2,3). In
the following experiments, the maximal number M azx Step of
simulation steps for a candidate P system in P-Lingua assigned
is 20; for each parameter value, we perform 100 independent
tests, that is, the experimental results are statistical mean values
over 100 independent tests.

First of all, we investigate the effect of 7,,, on the PPGA per-
formance. In the experiment, P, increases from 0 to 1 with the
interval 0.05; P., Np, MaxGen, 1 and -y are set to 0.8, 20, 600,
1 and 1, respectively. When we use PPGA to design the system
II.,, we record the successful rate (SR) and average generation
(AG) for each P,, value. SR refers to the ratio of the number
of successful computations to 100 independent tests. AG is the
average of the evolutionary generations over 100 independent
tests when the algorithm stops for each case. Experimental re-
sults are shown in Fig. 6 and indicate that PPGA obtains the
highest SR and smallest AG when P,,, = 0.1.

Secondly, we discuss the setting of P,. In the experiment, let
P, vary from 0 to 1 with the interval 0.05. The rest parame-
ters, Py,, Np, MaxGen, n and +y are set to 0.1, 20, 600, 1 and
1, respectively. Similarly, we record SR and AG for each P,
value. Fig. 7 shows the experimental results and exhibits that
the P, change does not affect SR, while AG reaches a lower
value when P, increases from 0.6 to 1.

10

801

D
S

—8— AG

601

.
'S
(o]

40+

N

Successful rates(%)
Average generations

N
o
T
|
N
()}

O 1 1 1 1 1 1 1 1 1 0
0O 01 02 03 04 05 06 07 08 09 1
Crossover rates

Fig. 7. Experimental results of P..

100 100

95 11900

90 11700

w
85} 11500 '5
=

Successful rates(%)

80 11300

75+ 11100

70

. . . 900
0 20 40 60 80 100

Population size

Fig. 8. Experimental results of ;N p.

Thirdly, the investigation of Np is involved. In the experi-
ment, the population size Np goes up from 5 to 100 with an
interval 5; other parameters, P, P., MaxGen,n and +y are set
to 0.1, 0.8, 600, 1 and 1, respectively. SR and the total number
of function evaluations (NoFE) are used to evaluate the algo-
rithm performance. NoFE refers to the total number of the fit-
ness function evaluations for candidate P systems in 100 inde-
pendent runs. Experimental results are given in Fig. 8. It can be
seen from this figure that Np could be assigned as 20.

Next, we describe the discussion of M axzGen. In the experi-
ment, the value of M axGen grows from 50 to 800 at a rate 50;
the parameters, P,,, P., Np, and v are set to 0.1, 0.8, 20, 1
and 1, respectively. The changes of SR and AG with M axGen
are illustrated in Fig. 9. The results demonstrate that it is enough
for PPGA to set MaxzGen to 200 to obtain SR = 100.

Subsequently, the effect of 77 on the PPGA performance is
investigated. In the experiment, has twenty choices: 0, 0.2,
0.4, 0.6,038,1,2,3,4,5,6,7,8,9, 10, 20, 30, 40, 50 and
100; P,,, P., Np, MaxzGen and ~y are set to 0.1, 0.8, 20, 200
and 1, respectively. The changes of SR, AG and the number
of successful P system variants (NoPS) against 7 are provided
in Fig. 10. The experimental results reveal that PPGA achieves

100 5

160
__ %ot 55 ,
2 c
< kel
3 150 &
E 2
S 8of 45 g
@ [0}

1]

3 140 €
S —e— SR g
@ —m—AG| 135 <

130

60 1 1 1 L 1 1 1 25

50100 200 300 400 500 600 700 800

Maximal numbers of evolutionary generations

Fig. 9. Experimental results of M axGen.

10

80r

60

40+

SR(%)/NoPS/AG

—@— SR
—— NoPS

—— AG

20t

0 1 1 1 L 1 1 L 1
0O 04 08 2 4 6 8 10 30 50100
Redundant object penalty factors

Fig. 10. Experimental results of #.

the best performance with respect to SR, AG and NoPS when
n = 1.

Finally, we discuss the guideline for setting . In the experi-
ment, the + value is sequentially chosen from the range [0, 0.2,
0.4,0.6,0.8,1,2,3,4,5,6,7,8,9, 10, 20, 30, 40, 50, 100]; P,
P., Np, MaxGen and 7 are assigned as 0.1, 0.8, 20, 200 and
1, respectively. Experimental results are shown in Fig. 11 and
disclose that the best values of SR, AG and NoPS are gained at

v =1.

B. Design Examples

In this subsection, the design of the cell-like P system II.,,,
which is described in Section IV-A, for fulfilling the compu-
tation n? is discussed to test the feasibility and effectiveness
of PPGA. The parameters, P,,, P., Np, MaxGen, n and ~
are set to 0.1, 0.8, 20, 200, 1 and 1, respectively. We perform
5000 independent runs of the design experiment and obtain the
successful rate 100%. The introduced design approach obtains
2930 different variants of cell-like P systems II., for success-
fully fulfilling the computation of n2. Due to page limit, Table I
lists only five successful P systems. The complete list of the
1936 successful P systems can refer to http.//www.nicsg.net/

370

10

80
(O]
<
» 60
o
(o]
£
g 40
o
7}
20 —&— SR
—— NoPS

—— AG
0 1 1 1 1 1 1
0O 04 08 2 4 6 8 10 30
Redundant object penalty factors

Fig. 11. Experimental results of ~.

TABLE I
SUCCESSFUL P SYSTEMS

No w w R
b — bs
wo = 2\ aj ba]](z)
1 ([12[]2[]s]o 51}1 —a b1 — ab
2 _ aly — ab
ws =a alz — sb
wo = A Z:zi]]%
2 [[[11]2[]slo g; - Z al1 — [a)1a
_ ale — sb
ws=a a]3 — b2
b — bs
wo i A ai ab]](i)
30 (hllellsle | 4pza a]y — ab
—b aly — sb
3 alz — ab
b—as
wo = A oo
4 [([[11[1s]2]o ws — b al1 — [al1a
wa = a b]z — sb
3 alz — [a]za
- b — salo
:f}o — b a — salo
5 ([11[]2[]s]o ws — b bl — [Bia
_ b]z — [b]za
s =a alz — sb

portal.php?mod=view&aid=165, where p, W and R are the
membrane structure, the vector of initial multisets and the set
of evolution rules in a successful P system, respectively. Due to
the randomness of the selection of membrane structure, objects
and rules, we can obtain multiple solutions for the same com-
putational task on the identical condition to provide multiple
possibilities to construct different complex membrane systems.

C. Minimal P System Design

In this subsection, we try to use PPGA to find the minimal P
system for fulfilling the given computational task 2. Here the
minimal P system refers to the one with the simplest membrane
structure, the smallest number of objects in V', the smallest
number of initial objects, the smallest numbers of evolution
rules and the smallest number of objects present in their left
and right hand sides of its rules.

TABLE 11
SUCCESSFUL MINIMAL P SYSTEMS
No 1% W = [’wo] R = [Ro]
1 1 sl1 [s — bsa, a — ab?]q
2 1 al1 [s — b%s, a — abs]y

We start with the simplest case: one membrane, two objects
in V, one initial object, one evolution rule with one left hand
object and two right hand objects. In the experiment, we set the
values of the parameters, Py, P., Np, MaxzGen, n and y to
0.1,0.8,20,200, 1 and 1, respectively. Totally 5000 independent
tests are performed. Unfortunately no successful P system can
be obtained. Next, we adjust the initial setting of the P system
as follows: one membrane, two objects in V', one initial object,
two evolution rules, each of which has one left hand object and
two right hand objects. 5000 independent tests are repeated in an
attempt to obtain a successful P system, but we get nothing. So
we go further to change the initial configuration: one membrane,
three objects in V', one initial object, two evolution rules, each
of which has one left hand object and three right hand objects.
Thus, we achieve two successful P systems, which are listed in
Table I1.

V. CONCLUSIONS

This study discusses the automatic design of a deterministic
and non-halting P system by tuning membrane structures, ini-
tial objects and evolution rules. In this design, a permutation
encoding technique is introduced to represent a P system in-
cluding its hierarchical membrane structure, initial objects and
evolution rules; a penalty function for evaluating a candidate
P system is presented through considering the feasibility of a
P system due to its membrane structure and dissolution rules,
the redundancy of objects and evolution rules, non-determinism
and halting characteristic; a GA is used to guide a family of
P systems toward a successful one. In addition, this study con-
siders the rewriting-communication rule in the design, the pa-
rameter setting of PPGA and the design of the minimal P system.
A large number of experiments verify the feasibility and effec-
tiveness of the proposed method. This work is the foundation of
our future design of general polynomial and more complicated
P systems.

ACKNOWLEDGMENT

The authors would like to thank the Editor-in-Chief, Pro-
fessor M. Hughes and Professor H. Hess, the editors and the
anonymous reviewers for their insightful recommendations and
comments to improve this paper.

REFERENCES

[1] G. Paun, “Computing with membranes,” J. Comput. Syst. Sci., vol. 61,
pp. 108-143, 1998.

[2] G. Paun, G. Rozenberg, and A. Salomaa, The Oxford Handbook of
Membrane Computing. New York: Oxford Univ. Press, 2010.

[3] T. Song, L. Pan, J. Wang, 1. Venkat, K. G. Subramanian, and R. Ab-
dullah, “Normal forms of spiking neural P systems with anti-spikes,”
IEEE Trans. NanoBiosci., vol. 11, no. 4, pp. 352-359, 2012.

[4] L.Panand X. Zeng, “Small universal spiking neural P systems working
in exhaustive mode,” IEEE Trans. NanoBiosci., vol. 10, no. 2, pp.
99-105, Jun. 2011.

[5] G. Zhang, J. Cheng, M. Gheorghe, and Q. Meng, “A hybrid approach
based on differential evolution and tissue membrane systems for
solving constrained manufacturing parameter optimization problems,”
Appl. Soft Comput., vol. 13, no. 3, pp. 1528-1542, Mar. 2013.

[6] X. Zeng, T. Song, X. Zhang, and L. Pan, “Performing four basic
arithmetic operations with spiking neural P systems,” IEEE Trans.
NanoBiosci., vol. 11, no. 4, pp. 366-374, 2012.

[7] C. Buiu, C. Vasile, and O. Arsene, “Development of membrane con-
trollers for mobile robots,” Inf. Sci., vol. 187, pp. 33-51, Mar. 2012.

[8] G. Escuela and M. A. Gutiérrez-Naranjo, “An application of genetic
algorithms to membrane computing,” in Proc. 8th Brainstorming Week
Membrane Comput., 2010, pp. 101-108.

[9] X.Huang, G. Zhang, H. Rong, and F. Ipate, M. Gheorghe, G. Paun, G.
Rozenberg, A. Salomaa, and S. Verlan, Eds., “Evolutionary design of a
simple membrane system,” in Proc. Membrane Comput. (CMC2011),
vol. 7184, Lecture Notes in Computer Science, pp. 203-214.

[10] C. Tudose, R. Lefticaru, and F. Ipate, “Using genetic algorithms and
model checking for P systems automatic design,” in Nature Inspired
Cooperative Strategies for Optimization, D. A. Pelta, N. Krasnogor, D.
Dumitrescu, C. Chira, and R. Lung, Eds. New York: Springer, 2011,
vol. 387, Studies in Computational Intelligence, pp. 285-302.

[11] Y. Chen, G. Zhang, T. Wang, and X. Huang, “Automatic design of a P
system for basic arithmetic operations,” Chinese J. Electron., vol. 23,
no. 2, pp. 302-304, 2014.

[12] G. Zhang, M. Gheorghe, L. Pan, and M. J. Pérez-Jiménez, “Evolu-
tionary membrane computing: A comprehensive survey and new re-
sults,” Inf. Sci., vol. 279, pp. 528-551, 2014.

[13] Z. Ou, G. Zhang, T. Wang, and X. Huang, “Automatic design of cell-
like P systems through tuning membrane structures, initial objects and
evolution rules,” Int. J. Unconventional Comput., vol. 9, no. 5-6, pp.
425-443, 2013.

[14] S. Ronald, “Robust encodings in genetic algorithms: A survey of en-
coding issues,” in Proc. IEEE Int. Conf. Evol. Comput., Indianapolis,
IN, USA, Apr. 1997, pp. 43-48.

[15] M. Garcia-Quismondo, R. Gutiérrez-Escudero, M. A. Martinez-del-
Amor, E. Orejuela-Pinedo, and 1. Pérez-Hurtado, “P-Lingua 2.0: A
software framework for cell-like P systems,” Int. J. Comput. Commun.
Control, vol. 4, pp. 234-243, Sep. 2009.

[16] M. Garcia-Quismondo, R. Gutiérrez-Escudero, 1. Pérez-Hurtado, M. J.
Pérez-Jiménez, and A. Riscos-Nuifiez, G. Paun, M. J. Pérez-Jiménez,
A. Riscos-Nuifiez, G. Rozenberg, and A. Salomaa, Eds., “An overview
of P-Lingua 2.0,” in Proc. Workshop Membrane Comput., 2010, vol.
5957, Lecture Notes in Computer Science, pp. 264—288.

[17] K. Meffert, J. Meseguer, E. Mart, J. Vos, A. Meskauskas, and N. Rot-
stan, JGAP—Java Genetic Algorithms Package [Online]. Available:
http://jgap.sf.net

Gexiang Zhang (M’03) received his Ph.D. degree in
2005 from Southwest Jiaotong University, Chengdu,
China. Since 2005, he has been a Professor at the
School of Electrical Engineering in Southwest
Jiaotong University, where he leads the research
group of Nature-Inspired Computation and Smart
Grid (NICSG).

His research interests include natural computing
(membrane computing, evolutionary computation,
and DNA computing), smart grid and robotics.

Haina Rong received her Ph.D. in 2010 from South-
west Jiaotong University, China, where she is now a
lecturer at the School of Electrical Engineering. His
research interests cover natural computing, such as
membrane computing and evolutionary computation,
and smart grid.

Zhu Ou received his master’s degree in 2013 from
Southwest Jiaotong University. His research interests
include membrane computing and evolutionary com-
putation.

Mario J. Pérez-Jiménez received his Ph.D. degree
in mathematics from the University of Sevilla,
Sevilla, Spain in 1992. Currently, he is a numerary
member of the Academia Europaea (The Academy
of Europe), and a full Professor in Computer Science
and Artificial Intelligence, University of Sevilla,
where he is the head of the Research Group on
Natural Computing.

His main research interests include theory of
computation, computational complexity theory,
natural computing (DNA computing and membrane

computing), bioinformatics and computational modeling for systems biology

and population dynamics.

synthetic biology.

Marian Gheorghe received his Ph.D. degree from
the University of Bucharest, Romania, in 1991.

He is currently Reader with the Department of
Computer Science, Sheffield University, U.K., and
Head of the Verification and Testing Group. He has
extensively published on topics regarding compu-
tational models, such as automata and languages,
or unconventional computing, especially membrane
computing and membrane algorithms. He has also
contributions in verification and testing, software
engineering, agent-based systems, systems and

