12 research outputs found

    Glucocorticoid Resistance: Interference between the Glucocorticoid Receptor and the MAPK Signalling Pathways

    Full text link
    Endogenous glucocorticoids (GCs) are steroid hormones that signal in virtually all cell types to modulate tissue homeostasis throughout life. Also, synthetic GC derivatives (pharmacological GCs) constitute the first-line treatment in many chronic inflammatory conditions with unquestionable therapeutic benefits despite the associated adverse effects. GC actions are principally mediated through the GC receptor (GR), a ligand-dependent transcription factor. Despite the ubiquitous expression of GR, imbalances in GC signalling affect tissues differently, and with variable degrees of severity through mechanisms that are not completely deciphered. Congenital or acquired GC hypersensitivity or resistance syndromes can impact responsiveness to endogenous or pharmacological GCs, causing disease or inadequate therapeutic outcomes, respectively. Acquired GC resistance is defined as loss of efficacy or desensitization over time, and arises as a consequence of chronic inflammation, affecting around 30% of GC-treated patients. It represents an important limitation in the management of chronic inflammatory diseases and cancer, and can be due to impairment of multiple mechanisms along the GC signalling pathway. Among them, activation of the mitogen-activated protein kinases (MAPKs) and/or alterations in expression of their regulators, the dual-specific phosphatases (DUSPs), have been identified as common mechanisms of GC resistance. While many of the anti-inflammatory actions of GCs rely on GR-mediated inhibition of MAPKs and/or induction of DUSPs, the GC anti-inflammatory capacity is decreased or lost in conditions of excessive MAPK activation, contributing to disease susceptibility in tissue- and disease- specific manners. Here, we discuss potential strategies to modulate GC responsiveness, with the dual goal of overcoming GC resistance and minimizing the onset and severity of unwanted adverse effects while maintaining therapeutic potential

    Nuclear receptors: Lipid and hormone sensors with essential roles in the control of cancer development

    Get PDF
    Nuclear receptors (NRs) are a superfamily of ligand-activated transcription factors that act as biological sensors and use a combination of mechanisms to modulate positively and negatively gene expression in a spatial and temporal manner. The highly orchestrated biological actions of several NRs influence the proliferation, differentiation, and apoptosis of many different cell types. Synthetic ligands for several NRs have been the focus of extensive drug discovery efforts for cancer intervention. This review summarizes the roles in tumour growth and metastasis of several relevant NR family members, namely androgen receptor (AR), estrogen receptor (ER), glucocorticoid receptor (GR), thyroid hormone receptor (TR), retinoic acid receptors (RARs), retinoid X receptors (RXRs), peroxisome proliferator-activated receptors (PPARs), and liver X receptors (LXRs). These studies are key to develop improved therapeutic agents based on novel modes of action with reduced side effects and overcoming resistance

    A hotspot for posttranslational modifications on the androgen receptor dimer interface drives pathology and anti-androgen resistance

    Get PDF
    Mutations of the androgen receptor (AR) associated with prostate cancer and androgen insensitivity syndrome may profoundly influence its structure, protein interaction network, and binding to chromatin, resulting in altered transcription signatures and drug responses. Current structural information fails to explain the effect of pathological mutations on AR structure-function relationship. Here, we have thoroughly studied the effects of selected mutations that span the complete dimer interface of AR ligand-binding domain (AR-LBD) using x-ray crystallography in combination with in vitro, in silico, and cell-based assays. We show that these variants alter AR-dependent transcription and responses to anti-androgens by inducing a previously undescribed allosteric switch in the AR-LBD that increases exposure of a major methylation target, Arg761. We also corroborate the relevance of residues Arg761 and Tyr764 for AR dimerization and function. Together, our results reveal allosteric coupling of AR dimerization and posttranslational modifications as a disease mechanism with implications for precision medicine

    The Multivalency of the glucocorticoid receptor ligand-binding domain explains its manifold physiological activities

    Full text link
    The glucocorticoid receptor (GR) is a ubiquitously expressed transcription factor that controls metabolic and homeostatic processes essential for life. Although numerous crystal structures of the GR ligand-binding domain (GR-LBD) have been reported, the functional oligomeric state of the full-length receptor, which is essential for its transcriptional activity, remains disputed. Here we present five new crystal structures of agonist-bound GR-LBD, along with a thorough analysis of previous structural work. We identify four distinct homodimerization interfaces on the GR-LBD surface, which can associate into 20 topologically different homodimers. Biologically relevant homodimers were identified by studying a battery of GR point mutants including crosslinking assays in solution, quantitative fluorescence microscopy in living cells, and transcriptomic analyses. Our results highlight the relevance of non-canonical dimerization modes for GR, especially of contacts made by loop L1-3 residues such as Tyr545. Our work illustrates the unique flexibility of GR's LBD and suggests different dimeric conformations within cells. In addition, we unveil pathophysiologically relevant quaternary assemblies of the receptor with important implications for glucocorticoid action and drug design

    A hotspot for posttranslational modifications on the androgen receptor dimer interface drives pathology and anti-androgen resistance

    Get PDF
    Mutations of the androgen receptor (AR) associated with prostate cancer and androgen insensitivity syndrome may profoundly influence its structure, protein interaction network, and binding to chromatin, resulting in altered transcription signatures and drug responses. Current structural information fails to explain the effect of pathological mutations on AR structure-function relationship. Here, we have thoroughly studied the effects of selected mutations that span the complete dimer interface of AR ligand-binding domain (AR-LBD) using x-ray crystallography in combination with in vitro, in silico, and cell-based assays. We show that these variants alter AR-dependent transcription and responses to anti-androgens by inducing a previously undescribed allosteric switch in the AR-LBD that increases exposure of a major methylation target, Arg761. We also corroborate the relevance of residues Arg761 and Tyr764 for AR dimerization and function. Together, our results reveal allosteric coupling of AR dimerization and posttranslational modifications as a disease mechanism with implications for precision medicine

    The multivalency of the glucocorticoid receptor ligand-binding domain explains its manifold physiological activities

    Get PDF
    20 páginas, 7 figurasThe glucocorticoid receptor (GR) is a ubiquitously expressed transcription factor that controls metabolic and homeostatic processes essential for life. Although numerous crystal structures of the GR ligand-binding domain (GR-LBD) have been reported, the functional oligomeric state of the full-length receptor, which is essential for its transcriptional activity, remains disputed. Here we present five new crystal structures of agonist-bound GR-LBD, along with a thorough analysis of previous structural work. We identify four distinct homodimerization interfaces on the GR-LBD surface, which can associate into 20 topologically different homodimers. Biologically relevant homodimers were identified by studying a battery of GR point mutants including crosslinking assays in solution, quantitative fluorescence microscopy in living cells, and transcriptomic analyses. Our results highlight the relevance of non-canonical dimerization modes for GR, especially of contacts made by loop L1-3 residues such as Tyr545. Our work illustrates the unique flexibility of GR's LBD and suggests different dimeric conformations within cells. In addition, we unveil pathophysiologically relevant quaternary assemblies of the receptor with important implications for glucocorticoid action and drug designE.E.-P. thanks the generosity of the Gemma E. Carretero Fund; MINECO [BFU2017-86906-R, SAF2017-71878-REDT, SAF2015-71878-REDT to E.E.-P., RTI2018-101500-B-I00 to P.F.-P., RTI2018-096735-B-100 to A.R.M., PID2019-110167RB-I00 to J.F.-R., SAF2017-89510-R to A.V.F. and C.C.]; G.L.H thanks the NIH Intramural Research Program; D.M.P was supported by CONICET. Funding for open access charge: Spanish Ministry of Science (MINECO).Peer reviewe

    Structural and Functional Analysis of the Glucocorticoid Receptor Multimerization: Implications for Human Pathophysiology

    Get PDF
    [eng] El receptor de glucocorticoides (GR) es un factor de transcripción que se expresa de forma ubicua y controla procesos esenciales para la vida como el metabolismo, la inflamación y la homeostasis. Aunque se han publicado numerosas estructuras cristalinas del dominio de unión al ligando de este receptor (GR-LBD), el estado oligomérico funcional del receptor en su totalidad, el cual es esencial para su actividad transcripcional, sigue siendo cuestionado. En esta disertación doctoral presentamos seis nuevas estructuras cristalinas del dominio GR-LBD unido a un agonista, junto con un extensivo análisis del trabajo estructural previamente publicado. Como resultado de esta investigación, se ha identificado un catálogo de 20 conformaciones diméricas distintas a partir de los estudios estructurales (usando cristalografía de rayos X y complementándolo con cálculos in silico), así como homodímeros biológicamente importantes corroborados con una batería de mutaciones puntuales de GR en áreas cruciales para el autoensamblaje de este receptor. Además, GR y sus mutantes han sido analizados usando ensayos de crosslinking y resonancia de plasmones superficiales en solución, así como con microscopia cuantitativa de fluorescencia en células. Nuestros resultados destacan la relevancia de los modelos no canónicos de dimerización para GR, especialmente los contactos mediante residuos localizados en el loop L1-3 como la Tyr545. No solo esto, sino que también describimos un pocket secundario ubicado en la superficie del dominio LBD del receptor, al cual hemos denominado sensor site, capaz de modular la actividad transcripcional de GR al unir derivados del colesterol, tanto endógenos como sintéticos, convirtiéndose así en un potencial candidato como diana para nuevos tratamientos. Nuestro trabajo revela los ensamblajes cuaternarios (pato) fisiológicamente relevantes de este receptor nuclear que tienen importantes implicaciones para la acción de los glucocorticoides y que serán cruciales para el futuro diseño de fármacos.[spa] The glucocorticoid receptor (GR) is a ubiquitously expressed transcription factor that controls metabolic and homeostatic processes essential for life. Although numerous crystal structures of the GR ligand-binding domain (GR-LBD) have been reported, the functional oligomeric state of the full-length receptor (FL-GR), which is essential for its transcriptional activity, remains disputed. In this thesis dissertation we present six new crystal structures of agonist-bound GR-LBD, along with an extensive analysis of previous structural work. A catalog of 20 different dimeric arrangements have been identified from the structural studies (using X-ray crystallography and complementary in silico calculations) and biologically meaningful homodimers were corroborated by studying a battery of GR point mutants in selected areas crucial for GR-LBD self-assembly. In addition, GR mutants were analyzed using crosslinking and surface plasmon resonance assays in solution and quantitative fluorescence microscopy in living cells. Our results highlight the relevance of non-canonical dimerization modes for GR, especially of contacts made by loop L1-3 residues such as Tyr545. Additionally, we describe a second surface pocket placed in the LBD that can modulate GR activity by binding several endogenous and synthetic cholesterol derivatives. We have coined the term GR sensor site for this newly identified druggable pocket on the receptor. Our work unveils likely (patho)physiologically relevant quaternary assemblies of this nuclear receptor with important implications for glucocorticoid action and drug design

    Non-canonical dimerization of the androgen receptor and other nuclear receptors: implications for human disease

    No full text
    18 páginas, 5 figuras, 1 tablaNuclear receptors are transcription factors that play critical roles in development, homeostasis and metabolism in all multicellular organisms. An important family of nuclear receptors comprises those members that respond to steroid hormones, and which is subdivided in turn into estrogen receptor (ER) isoforms α and β (NR3A1 and A2, respectively), and a second subfamily of so-called oxosteroid receptors. The latter includes the androgen receptor (AR/NR3C4), the glucocorticoid receptor (GR/NR3C1), the mineralocorticoid receptor (MR/NR3C2) and the progesterone receptor (PR/NR3C3). Here we review recent advances in our understanding of the structure-and-function relationship of steroid nuclear receptors and discuss their implications for the etiology of human diseases. We focus in particular on the role played by AR dysregulation in both prostate cancer (PCa) and androgen insensitivity syndromes (AIS), but also discuss conditions linked to mutations of the GR gene as well as those in a non-steroidal receptor, the thyroid hormone receptor (TR). Finally, we explore how these recent results might be exploited for the development of novel and selective therapeutic strategies.E E P expresses her deepest gratitude to the generous and continuous private donations from Gemma E Carretero. E E P, P F P and P P acknowledge the RED Nacional de Receptores Nucleares (NurCaMeIn: SAF2017-71878-REDT and SAF2015-71878-REDT). E E P acknowledges the BFU-Retos2017-86906-R, P F P the SAF2014-57994-R, P P the SAF2017-88046-R and A R the RTI2018-096735-B-100 grants from the MINECO. E E P and P F P are thankful for the CaixaImpulse2017 (ARDIs) from La Caixa (Fundación Bancaria Caja de Ahorros y Pensiones de Barcelona, Obra Social La Caixa y Caixa Risc) and SGR2017 and LLAVOR2018 grants from the Generalitat de Catalunya. E E P acknowledges the F2I-FVAL and F2I-MiR grants from the EU FEDER and the Fundació Bosch i Gimpera (FBG).Peer reviewe

    Oleic acid is an endogenous ligand of TLX/NR2E1 that triggers hippocampal neurogenesis.

    No full text
    Neural stem cells, the source of newborn neurons in the adult hippocampus, are intimately involved in learning and memory, mood, and stress response. Despite considerable progress in understanding the biology of neural stem cells and neurogenesis, regulating the neural stem cell population precisely has remained elusive because we have lacked the specific targets to stimulate their proliferation and neurogenesis. The orphan nuclear receptor TLX/NR2E1 governs neural stem and progenitor cell self-renewal and proliferation, but the precise mechanism by which it accomplishes this is not well understood because its endogenous ligand is not known. Here, we identify oleic acid (18:1ω9 monounsaturated fatty acid) as such a ligand. We first show that oleic acid is critical for neural stem cell survival. Next, we demonstrate that it binds to TLX to convert it from a transcriptional repressor to a transcriptional activator of cell-cycle and neurogenesis genes, which in turn increases neural stem cell mitotic activity and drives hippocampal neurogenesis in mice. Interestingly, oleic acid-activated TLX strongly up-regulates cell cycle genes while only modestly up-regulating neurogenic genes. We propose a model in which sufficient quantities of this endogenous ligand must bind to TLX to trigger the switch to proliferation and drive the progeny toward neuronal lineage. Oleic acid thus serves as a metabolic regulator of TLX activity that can be used to selectively target neural stem cells, paving the way for future therapeutic manipulations to counteract pathogenic impairments of neurogenesis
    corecore