17 research outputs found

    Characterization of Cylindrodendrum, Dactylonectria and Ilyonectria isolates associated with loquat decline in Sapin, with description of Cylindrodendrum alicantinum sp. nov

    Full text link
    [EN] Thirty-one loquat orchards (Eriobotrya japonica 'Algerie') with plants exhibiting decline symptoms were surveyed between 2004 and 2007 in the province of Alicante, Spain. Twenty-eight representative isolates with Cylindrocarpon-like asexual morphs recovered from affected roots were included in this study, with the objective to characterize them by means of phenotypical characterization, DNA analysis and pathogenicity tests. Dactylonectria alcacerensis, D. torresensis and Ilyonectria robusta were identified based on morphological and cultural characteristics as well as DNA sequence data for part of histone H3, with D. torresensis the most frequent species. All of them are reported for the first time on loquat, and I. robusta is reported for the first time in Spain. In addition, one species is newly described, Cylindrodendrum alicantinum. Pathogenicity tests with representative isolates showed that these species were able to induce typical root rot disease symptoms, affecting plant development or even leading to plant death. This research demonstrates the association of species belonging to the genera Cylindrodendrum, Dactylonectria and Ilyonectria with root rot of loquat and loquat decline in the province of Alicante (eastern Spain). This information should be considered for the improvement of the current management strategies against these soil-borne pathogens when establishing new loquat plantations or introducing new susceptible fruit crops in the region.We acknowledge Dr. L. Lombard and Prof. Dr. P.W. Crous (CBS-KNAW Fungal Biodiversity Centre, The Netherlands) for valuable discussions and data sharing. This work was funded by the Cooperativa Agricola de Callosa d'En Sarria (Alicante, Spain). We would like to thank E. Soler for their technical assistance.Agustí Brisach, C.; Cabral, A.; González Domínguez, E.; Perez Y Sierra, AM.; León Santana, M.; Abad Campos, MP.; García Jiménez, J.... (2016). Characterization of Cylindrodendrum, Dactylonectria and Ilyonectria isolates associated with loquat decline in Sapin, with description of Cylindrodendrum alicantinum sp. nov. EUROPEAN JOURNAL OF PLANT PATHOLOGY. 145(1):103-118. doi:10.1007/s10658-015-0820-7S1031181451Agustí-Brisach, C., & Armengol, J. (2013). Black-foot disease of grapevine: an update on taxonomy, epidemiology and management strategies. Phytopathologia Mediterranea, 52, 245–261.Agustí-Brisach, C., Gramaje, D., García-Jiménez, J., & Armengol, J. (2013a). Detection of Ilyonectria spp. in the grapevine nursery propagation process in Spain. European Journal of Plant Pathology, 137, 103–112.Agustí-Brisach, C., Gramaje, D., García-Jiménez, J., & Armengol, J. (2013b). Detection of black-foot and Petri disease pathogens in natural soils of grapevine nurseries and vineyards using bait plants. Plant and Soil, 364, 5–13.Aiello, D., Guarnaccia, V., Vitale, A., Cirvilleri, G., Granata, G., Epifani, F., Perrone, G., Polizzi, G., Groenewald, J. Z., & Crous, P. W. (2014). Ilyonectria palmarum sp. nov. causing dry basal stem rot of Arecaceae. European Journal of Plant Pathology, 138, 347–359.Booth, C. D. (1966). The genus Cylindrocarpon. Mycological Papers (CMI), 104, 1–56.Brayford, D. (1993). Cylindrocarpon. In L. L. Singleton, J. D. Mihail, & C. M. Rush (Eds.), Methods for research on soilborne phytopathogenic fungi (pp. 103–106). St. Paul: APS Press.Cabral, A., Groenewald, J. Z., Rego, C., Oliveira, H., & Crous, P. W. (2012a). Cylindrocarpon root rot: multi-gene analysis reveals novel species within the Ilyonectria radicicola species complex. Mycological Progress, 11, 655–688.Cabral, A., Rego, C., Nascimento, T., Oliveira, H., Groenewald, J. Z., & Crous, P. W. (2012b). Multi-gene analysis and morphology reveal novel Ilyonectria species associated with black foot disease of grapevines. Fungal Biology, 116, 62–80.Calabrese, F. (2006). Origen de la especie. In M. Agustí, C. Reig, & P. Undurraga (Eds.), El cultivo del níspero japonés. España: Pontificia Universidad Católica de Valparaíso, Chile and Universidad Politécnica de Valencia.Chaverri, P., Salgado, C., Hirooka, Y., Rossman, A. Y., & Samuels, G. J. (2011). Delimitation of Neonectria and Cylindrocarpon (Nectriaceae, Hypocreales, Ascomycota) and related genera with Cylindrocarpon-like anamorphs. Studies in Mycology, 68, 57–78.Crous, P. W., Gams, W., Stalpers, J. A., Robert, V., & Stegehuis, G. (2004a). MycoBank: an online initiative to launch mycology into the 21st century. Studies in Mycology, 50, 19–22.Crous, P. W., Groenewald, J. Z., Risede, J. M., & Hywel-Jones, N. L. (2004b). Calonectria species and their Cylindrocladium anamorphs: species with sphaeropedunculate vesicles. Studies in Mycology, 50, 415–429.Crous, P.W., Verkleij, G.J.M., Groenewald, J.Z., Samson, R.A. (Eds.) (2009). Fungal biodiversity. CBS laboratory manual series 1. Centraalbureau voor Schimmelcultures, Utrecht.Dhingra, O. D., & Sinclair, J. B. (1995). Basic plant pathology methods (2nd ed.). Boca Raton: CRC Press.Erper, I., Agustí-Brisach, C., Tunali, B., & Armengol, J. (2013). Characterization of root rot disease of kiwifruit in the Black Sea region of Turkey. European Journal of Plant Pathology, 136, 291–300.Felsenstein, J. (1985). Confidence limits on phylogenies: an approach using the bootstrap. Evolution, 39, 783–791.Gardes, M., & Bruns, T. D. (1993). ITS primers with enhanced specificity for basiodiomycetes-applications to the identification of mycorrhizae and rusts. Molecular Ecology, 2, 113–118.Glass, N. L., & Donaldson, G. (1995). Development of primer sets designed for use with PCR to amplify conserved genes from filamentous ascomycetes. Applied and Environmental Microbiology, 61, 1323–1330.González-Domínguez, E., Pérez-Sierra, A., Álvarez, L. A., Abad-Campos, P., Armengol, J., & García-Jiménez, J. (2008). Ethiology of decline of loquat (Eriobotrya japonica) in eastern Spain. Journal of Plant Pathology, 90(2, supplement), 179.González-Domínguez, E., Pérez-Sierra, A., Álvarez, L. A., León, M., Abad-Campos, P., Armengol, J., & García-Jiménez, J. (2009). Agentes fúngicos presentes en plantaciones de nísperos (Eriobotrya japonica Lindl.) con síntomas de decaimiento en la provincia de Alicante. Boletín Sanidad Vegetal Plagas, 35, 453–467.González-Domínguez, E., Rossi, V., Armengol, J., & García-Jiménez, J. (2013). Effect of environmental factors on mycelial growth and conidial germination of Fusicladium eriobotryae, and the infection of loquat leaves. Plant Disease, 97, 1331–1338.González-Domínguez, E., Armengol, J., & Rossi, V. (2014). Development and validation of a weather-based model for predicting infection of loquat fruit by Fusicladium eriobotryae. Plos One, 9, e107547.Halleen, F., Schroers, H. J., Groenewald, J. Z., & Crous, P. W. (2004). Novel species of Cylindrocarpon (Neonectria) and Campylocarpon gen. nov. associated with black-foot disease of grapevines (Vitis spp). Studies in Mycology, 50, 431–455.Halleen, F., Fourie, P. H., & Crous, P. W. (2006). A review of black-foot disease of grapevine. Phytopathologia Mediterranea, 45, S55–S67.Janick, J. (2011). Predictions for loquat improvement in the next decade. Acta Horticulturae, 887, 25–30.Larkin, M. A., Blackshields, G., Brown, N. P., Chenna, R., McGettigan, P. A., McWilliam, H., Valentin, F., Wallace, I. M., Wilm, A., Lopez, R., Thompson, J. D., Gibson, T. J., & Higgins, D. G. (2007). Clustal W and Clustal X version 2.0. Bioinformatics, 23, 2947–2948.Lin, S. Q. (2007). World loquat production and research with special reference to China. Acta Horticulturae, 750, 37–44.Lombard, L., Van der Merwe, N. A., Groenewald, J. Z., & Crous, P. W. (2014). Lineages in Nectriaceae: Re-evaluating the generic status of Ilyonectria and allied genera. Phytopathologia Mediterranea, 53, 515–532.Nirenberg, H. (1976). Untersuchungen über die morphologische und biologische Differenzierung in der Fusarium-Sektion Liseola. Mitteilungen aus der Biologischen Bundesanstalt für Land- und Forstwirtschaft, 169, 1–117.O’Donnell, K., & Cigelnik, E. (1997). Two divergent intragenomic rDNA ITS2 types within a monophyletic lineage of the fungus Fusarium are nonorthologous. Molecular Phylogenetics and Evolution, 7, 103–116.Petit, E., & Gubler, W. D. (2005). Characterization of Cylindrocarpon species, the cause of black foot disease of grapevine in California. Plant Disease, 89, 1051–1059.Rayner, R. W. (1970). A mycological colour chart. Kew: British Mycological Society and CAB International Mycological Institute.Read, N. D., Lichius, A., Shoji, J. Y., & Goryachev, A. B. (2009). Self-signalling and self-fusion in filamentous fungi. Current Opinion in Microbiology, 12, 608–615.Reig, C., Farina, V., Volpe, G., Mesejo, C., Martínez-Fuentes, A., Barone, F., Calabrese, F., & Agustí, M. (2012). Giberellic acid and flower bud development in loquat (Eriobotrya japonica Lindl.). Scientia Horticulturae, 129, 27–31.Samuels, G. J., & Brayford, D. (1990). Variation in Nectria radicicola and its anamorph, Cylindrocarpon destructans. Mycological Research, 94, 433–442.Sánchez-Hernández, M. E., Ruiz-Dávila, A., Pérez de Algaba, A., Blanco-López, M. A., & Trapero-Casas, A. (1998). Occurrence and etiology of death of young olive tres in southern Spain. European Journal of Plant Pathology, 104, 347–357.Sánchez-Torres, P., Hinarejos, R., & Tuset, J. J. (2009). Characterization and pathogenicity of Fusicladium eriobotryae, the fungal pathogen responsible for loquat scab. Plant Disease, 93, 1151–1157.Schroers, H. J., Zerjav, M., Munda, A., Halleen, F., & Crous, P. W. (2008). Cylindrocarpon pauciseptatum sp. nov., with notes on Cylindrocarpon species with wide, predominantly 3-septate macroconidia. Mycological Research, 112, 82–92.Soler, E., Martínez-Calvo, J., Llácer, G., & Badenes, M. L. (2007). Loquat in Spain: production and marketing. Acta Horticulturae, 750, 45–47.Tamura, K., Stecher, G., Peterson, D., Filipski, A., & Kumar, S. (2013). MEGA6: molecular evolutionary 16 genetics analysis version 6.0. Molecular Biology and Evolution, 30, 2725–2729.Tewoldemedhin, Y. T., Mazzola, M., Mostert, L., & McLeod, A. (2011). Cylindrocarpon species associated with apple tree roots in South Africa and their quantification using real-time PCR. European Journal of Plant Pathology, 129, 637–651.Vitale, A., Aiello, D., Guarnaccia, V., Perrone, G., Stea, G., & Polizzi, G. (2012). First report of root rot caused by Ilyonectria (=Neonectria) macrodidyma on avocado (Persea americana) in Italy. Journal of Phytopathology, 160, 156–159.Zhuang, W. Y., Nong, Y., & Luo, J. (2007). New species and new Chinese records of Bionectriaceae and Nectriaceae (Hypocreales, Ascomycetes) from Hubei, China. Fungal Diversity, 24, 347–357

    Longer intervals between SARS-CoV-2 infection and mRNA-1273 doses improve the neutralization of different variants of concern

    Get PDF
    The humoral immune response against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants of concern elicited by vaccination was evaluated in COVID-19 recovered individuals (Rec) separated 1-3 months (Rec2m) or 4-12 months (Rec9m) postinfection and compared to the response in naïve participants. Antibody-mediated immune responses were assessed in 66 participants by three commercial immunoassays and a SARS-CoV-2 lentiviral-based pseudovirus neutralization assay. Immunoglobulin (Ig) levels against SARS-CoV-2 spike were lower in naïve participants after two doses than in Rec after a single dose (p < 0.05). After two doses in Rec, levels of total Ig to receptor-binding domain were significantly increased in Rec9m compared to Rec2m (p < 0.001). The neutralizing potency observed in Rec9m was consistently higher than in Rec2m against variants of concern (VOCs) Alpha, Beta, Delta, and BA.1 sublineage of Omicron with 2.2-2.8-fold increases. Increasing the interval between SARS-CoV-2 infection and the vaccination with messenger RNA-based vaccines to more than 3 months generates a more efficient heterologous humoral immune response against VOCs by allowing enough time to mount a strong recall memory B cell response.This work is funded by Instituto de Salud Carlos III, a Spanish public body assigned to the Ministry of Science and Innovation that manages and promotes public clinical research related to Public Health, by Grants PI19CIII/00004 (José Alcamí and Francisco Díez‐Fuertes) and PI21CIII/00025 (Javier García‐Pérez and Mayte Pérez‐Olmeda), COVID‐19 Fund (Grants COV20/00679 (Javier García‐Pérez, Mayte Pérez‐Olmeda, José Alcamí, and Francisco Díez‐Fuertes) and COV20/00072 (Javier García‐Pérez, Mayte Pérez‐Olmeda, Almudena Ramírez‐García, María Castillo de la Osa, Rocio Layunta Acero, Laura Vicente‐Izquierdo, Cristina Avendaño‐Solá, and José Alcamí), and CIBERINFEC, co‐financed by the European Regional Development Fund (FEDER) “A way to make Europe.”S

    Fungal trunk pathogens associated with table grape decline in Northeastern Brazil

    Get PDF
    [EN] During the last five years a decline of table grape plants has been noticed in nurseries, young plantations and vineyards of the Northeastern region of Brazil, where the management systems for grapevine production are adapted to the specific environmental conditions of a tropical viticulture. Samples of table grape plants showing decline symptoms were obtained from grapevine nurseries, young plantations and vineyards located in the São Francisco, Assú and Siriji Valleys in 2010, and were subjected to fungal isolation. Grapevine trunk pathogens were identified using morphological and molecular methods. Species recovered included Botryosphaeria mamane, Campylocarpon fasciculare, C. pseudofasciculare, Lasiodiplodia crassipora, L. parva, L. pseudotheobromae, L. theobromae, Neofusicoccum parvum, Phaeoacremonium aleophilum, Pm. parasiticum and Phaeomoniella chlamydospora. They are all reported for the first time on grapevine in Brazil, with the exception of L. theobromae. Moreover, Botryosphaeria mamane, Lasiodiplodia parva and L. pseudotheobromae are reported for the first time on grapevine, and C. fasciculare is reported for the first time on the American continent.This research has been performed within the Programme VLC/Campus, Microcluster IViSoCa (Innovation for a Sustainable Viticulture and Quality), and was financially supported by the Project RTA2010- 00009-C03-03 (Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, INIA, Spain), the European Regional Development Fund (ERDF) and by CAPES (Project 203/2009 - International Cooperation CAPES-Brazil/DGU-Spain). We are thankful to CAPES (Brazil) for the research fellowships granted to K. C. Correia and S. J. Michereff.Correia, KC.; Saraiva Camara, MP.; Guimaraes Barbosa, MA.; Sales, RJ.; Agustí Brisach, C.; Gramaje, D.; León Santana, M.... (2013). Fungal trunk pathogens associated with table grape decline in Northeastern Brazil. Phytopathologia Mediterranea. 52(2):380-387. https://doi.org/10.14601/Phytopathol_Mediterr-11377S38038752

    Treatment with tocilizumab or corticosteroids for COVID-19 patients with hyperinflammatory state: a multicentre cohort study (SAM-COVID-19)

    Get PDF
    Objectives: The objective of this study was to estimate the association between tocilizumab or corticosteroids and the risk of intubation or death in patients with coronavirus disease 19 (COVID-19) with a hyperinflammatory state according to clinical and laboratory parameters. Methods: A cohort study was performed in 60 Spanish hospitals including 778 patients with COVID-19 and clinical and laboratory data indicative of a hyperinflammatory state. Treatment was mainly with tocilizumab, an intermediate-high dose of corticosteroids (IHDC), a pulse dose of corticosteroids (PDC), combination therapy, or no treatment. Primary outcome was intubation or death; follow-up was 21 days. Propensity score-adjusted estimations using Cox regression (logistic regression if needed) were calculated. Propensity scores were used as confounders, matching variables and for the inverse probability of treatment weights (IPTWs). Results: In all, 88, 117, 78 and 151 patients treated with tocilizumab, IHDC, PDC, and combination therapy, respectively, were compared with 344 untreated patients. The primary endpoint occurred in 10 (11.4%), 27 (23.1%), 12 (15.4%), 40 (25.6%) and 69 (21.1%), respectively. The IPTW-based hazard ratios (odds ratio for combination therapy) for the primary endpoint were 0.32 (95%CI 0.22-0.47; p < 0.001) for tocilizumab, 0.82 (0.71-1.30; p 0.82) for IHDC, 0.61 (0.43-0.86; p 0.006) for PDC, and 1.17 (0.86-1.58; p 0.30) for combination therapy. Other applications of the propensity score provided similar results, but were not significant for PDC. Tocilizumab was also associated with lower hazard of death alone in IPTW analysis (0.07; 0.02-0.17; p < 0.001). Conclusions: Tocilizumab might be useful in COVID-19 patients with a hyperinflammatory state and should be prioritized for randomized trials in this situatio

    Precariedad, exclusión social y diversidad funcional (discapacidad): lógicas y efectos subjetivos del sufrimiento social contemporáneo (II). Innovación docente en Filosofía

    Get PDF
    El PIMCD "Precariedad, exclusión social y diversidad funcional (discapacidad): lógicas y efectos subjetivos del sufrimiento social contemporáneo (II). Innovación docente en Filosofía" se ocupa de conceptos generalmente eludidos por la tradición teórica (contando como núcleos aglutinantes los de la precariedad laboral, la exclusión social y diversidad funcional o discapacidad), cuyo análisis propicia nuevas prácticas en la enseñanza universitaria de filosofía, adoptando como meta principal el aprendizaje centrado en el estudiantado, el diseño de nuevas herramientas de enseñanza y el fomento de una universidad inclusiva. El proyecto cuenta con 26 docentes de la UCM y otros 28 docentes de otras 17 universidades españolas (UV, UNED, UGR, UNIZAR, UAH, UC3M, UCA, UNIOVI, ULL, EHU/UPV, UA, UAM, Deusto, IFS/CSIC, UCJC, URJC y Univ. Pontificia de Comillas), que permitirán dotar a las actividades programadas de un alcance idóneo para consolidar la adquisición de competencias argumentativas y dialécticas por parte de lxs estudiantes implicados en el marco de los seminarios previstos. Se integrarán en el PIMCD, aparte de PDI, al menos 26 estudiantes de máster y doctorado de la Facultad de Filosofía, a lxs que acompañarán durante el desarrollo del PIMCD 4 Alumni de la Facultad de Filosofía de la UCM, actualmente investigadores post-doc y profesorxs de IES, cuya experiencia será beneficiosa para su introducción en la investigación. Asimismo, el equipo cuenta con el apoyo de varixs profesorxs asociadxs, que en algunos casos son también profesores de IES. Varixs docentes externos a la UCM participantes en el PIMCD poseen una dilatada experiencia en la coordinación de proyectos de innovación de otras universidades, lo que redundará en beneficio de las actividades a desarrollar. La coordinadora y otrxs miembros del PIMCD pertenecen a la Red de Innovación Docente en Filosofia (RIEF), puesta en marcha desde la Universitat de València (http://rief.blogs.uv.es/encuentros-de-la-rief/), a la que mantendremos informada de las actividades realizadas en el proyecto. Asimismo, lxs 6 miembros del PAS permitirán difundir debidamente las actividades realizadas en el PIMCD entre lxs estudiantes Erasmus IN del curso 2019/20 en la Facultad de Filosofía, de la misma manera que orientar en las tareas de maquetación y edición que puedan ser necesarias de cara a la publicación de lxs resultados del PIMCD y en las tareas de pesquisa bibliográfica necesarias para el desarrollo de los objetivos propuestos. Han manifestado su interés en los resultados derivados del PIMCD editoriales especializadas en la difusión de investigaciones predoctorales como Ápeiron y CTK E-Books

    Precariedad, exclusión social y diversidad funcional (discapacidad): lógicas y efectos subjetivos del sufrimiento social contemporáneo (III). Innovación docente en Filosofía

    Get PDF
    El PIMCD Precariedad, exclusión social y diversidad funcional (discapacidad): lógicas y efectos subjetivos del sufrimiento social contemporáneo (III). Innovación docente en Filosofía se ocupa de conceptos que generalmente han tendido a ser eludidos en la enseñanza académica de filosofía. Se trata de la tercera edición de un PIMCD que ha venido recibiendo financiación en las últimas convocatorias PIMCD UCM, de los que se han derivado publicaciones colectivas publicadas por Ediciones Complutense y Siglo XXI

    Genetic variation and host specificity of Phytophthora citrophthora isolates causing branch cankers in Clementine trees in Spain

    Full text link
    [EN] Considerable tree losses have been observed during the past few years in Spain due to Phytophthora branch canker of clementines caused by Phytophthora citrophthora. The emergence of this disease led to the speculation that either the pathogen has evolved increasing its aggressiveness or specificity to clementines. A total of 134 isolates of P. citrophthora collected from 2003 to 2005 in 135 citrus orchards in Spain and 22 reference isolates were analyzed genotypically and phenotypically to determine the structure of the population. Genotypic diversity was evaluated by means of Inter-Simple Sequence Repeat (ISSR) markers. Among the phenotypic characteristics examined, sporangial characters, sexual behavior, growth rates and colony morphology of the isolates at different temperatures were studied. The aggressiveness and host-specificity of selected isolates were evaluated by pathogenicity tests on sweet oranges and clementines under field conditions. Phytophthora branch canker of clementines was associated mainly with one genotype (P-1), which included 88% of the isolates obtained from branches. Strains isolated years before the first disease outbreak clustered also with this major genotype, thus it may be considered as a predominant population. Thirteen other minor genotypes were determined, but most contained only one isolate. Although there was wide variation in the morphological and physiological characters, all Phytophthora isolates obtained from branch cankers were sexually sterile and showed a characteristic petalloid colony pattern. As in previous greenhouse studies, pathogenicity tests under field conditions demonstrated that clementines and their hybrids were more susceptible to P. citrophthora than sweet oranges. However, no evidence was found to support the hypothesis that the emergence of the disease was associated with more aggressive or host-specific forms of P. citrophthora. © 2010 KNPV.Armado Álvarez, L.; León Santana, M.; Abad Campos, P.; García Jiménez, J.; Vicent, A. (2011). Genetic variation and host specificity of Phytophthora citrophthora isolates causing branch cankers in Clementine trees in Spain. European Journal of Plant Pathology. 129(1):103-117. doi:10.1007/s10658-010-9696-8S1031171291Abu-El Samen, F. M., Secor, G. A., & Gudmestad, N. C. (2003). Variability in virulence among asexual progenies of Phytophthora infestans. Phytopathology, 93, 293–304.Agustí, M. (2000). Citricultura. Madrid: Ediciones Mundi-Prensa. 416 pp.Alvarez, L. A., Vicent, A., De la Roca, E., Bascón, J., Abad-Campos, P., Armengol, J., et al. (2008a). Branch cankers on citrus trees in Spain caused by Phytophthora citrophthora. Plant Pathology, 57, 84–91.Alvarez, L. A., Vicent, A., Soler, J. M., De la Roca, E., Bascón, J., & García-Jiménez, J. (2008b). Comparison of application methods of systemic fungicides to suppress branch cankers in Clementine trees caused by Phytophthora citrophthora. Plant Disease, 92, 1357–1363.Alvarez, L. A., Gramaje, D., Abad-Campos, P., & García-Jiménez, J. (2009). Seasonal susceptibility of citrus scions to Phytophthora citrophthora and P. nicotianae and the influence of environmental and host—linked factors on the infection development. European Journal of Plant Pathology, 124, 621–635.Apphia, A. A., Flood, J., Bridge, P. D., & Archer, S. A. (2003). Inter- and intraspecific morphometric variation and characterization of Phytophthora isolates from cocoa. Plant Pathology, 52, 168–180.Bhat, R. G., Colowit, P. M., Tai, T. H., Aradhya, M. K., & Browne, G. T. (2006). Genetic and pathogenic variation in Phytophthora cactorum affecting fruit and nut crops in California. Plant Disease, 90, 161–169.Bou, F. (1879). Estudio Sobre el Naranjo, Limonero, Cidro y Otros Árboles de la Familia de las Auranciáceas que se Cultivan en la provincia de Castellón. Castellón: Imprenta de Fransisco Segarra.Brasier, C. M. (2008). The biosecurity threat to the UK and global environment from international trade in plants. Plant Pathology, 57, 792–808.Cohen, S., Allasia, V., Venard, P., Notter, S., Vernière, C., & Panabières, F. (2003). Intraspecific variation in Phytophthora citrophthora from citrus trees in eastern Corsica. European Journal of Plant Pathology, 109, 791–805.Cooke, D. E. L., & Duncan, J. M. (1997). Phylogenetic analysis of Phytophthora species based on ITS1 and ITS2 sequences of the ribosomal RNA gene repeat. Mycological Research, 101, 667–677.Day, J. P., Wattier, R. A. M., Shaw, D. S., & Shattock, R. C. (2004). Phenotypic and genotypic diversity in Phytophthora infestans on potato in Great Britain, 1995–98. Plant Pathology, 53, 303–315.Dice, L. R. (1945). Measures of the amount of ecological association between species. Ecology, 26, 297–302.Eikemo, H., Klemsdal, S. S., Riisberg, I., Bonants, P., Stensvand, A., & Tronsmo, A. M. (2004). Genetic variation between Phytophthora cactorum isolates differing in their ability to cause crown rot in strawberry. Mycological Research, 108, 317–324.Erwin, D. C., & Ribeiro, O. K. (1996). Phytophthora diseases worldwide. St. Paul: APS. 562 pp.Fawcett, H. S. (1936). Citrus diseases and their control. New York: McGraw-Hill. 656 pp.Flier, W. G., Kroon, L. P. N. M., Hermansen, A., van Raaij, H. M. G., Speiser, B., Tamm, L., et al. (2007). Genetic structure and pathogenicity of populations of Phytophthora infestans from organic potato crops in France, Norway, Switzerland and the United Kingdom. Plant Pathology, 56, 562–572.Goodwin, S. B. (1997). The population genetics of Phytophthora. Phytopathology, 87, 462–473.Hamm, P. B., & Hansen, E. M. (1981). Host specificity of Phytophthora megasperma from douglas-fir, soybean, and alfalfa. Phytopathology, 71, 65–68.Hantula, J., Dusabenyagasani, M., & Hamelin, R. (1996). Random amplified microsatellites (RAMS) a novel method for characterizing genetic variation within fungi. European Journal of Forest Pathology, 26, 159–166.Hantula, J., Lilia, A., & Parikka, P. (1997). Genetic variation and host specificity of Phytophthora cactorum isolated in Europe. Mycological Research, 101, 565–572.Hüberli, D., Tommerup, I. C., Dobrowolski, M. P., Calver, M. C., & Hardy, G. E. St. J. (2001). Phenotypic variation in a clonal lineage of two Phytophthora cinnamomi populations from Western Australia. Mycological Research, 105, 1053–1064.Jeffers, S. N., & Martin, S. B. (1986). Comparison of two media selective for Phytophthora and Pythium species. Plant Disease, 70, 1038–1043.Knapova, G., & Gisi, U. (2002). Phenotypic and genotypic structure of Phytophthora infestans populations on potato and tomato in France and Switzerland. Plant Pathology, 51, 641–653.Kumar, S., Tamura, K., & Nei, M. (2004). MEGA3: integrated software for molecular evolutionary genetics analysis and sequence alignment. Briefings in Bioinformatics, 5, 150–163.Lamour, K. H., & Hausbeck, M. K. (2000). Mefenoxam insensitivity and the sexual stage of Phytophthora capsici in Michigan cucurbit fields. Phytopathology, 90, 396–400.Lamour, K. H., & Hausbeck, M. K. (2001). The dynamics of mefenoxam insensitivity in a recombining population of Pytophthora capsici characterized with amplified fragment length polymorphism markers. Phytopathology, 91, 553–557.Linde, C., Drenth, A., Kemp, G. H. J., Wingfield, M. J., & von Broembsen, S. L. (1997). Population structure of Phytophthora cinnamomi in South Africa. Phytopathology, 87, 822–827.Madden, L. V. (2001). What are the nonindigenous plant pathogens that threaten U.S. crops and forests? APSnet Feature (October), American Phytopathological Society.Mantel, N. (1967). The detection of disease clustering and a generalized regression approach. Cancer Research, 27, 209–220.McDonald, B. A., & Linde, C. C. (2002). Pathogen population genetics, evolutionary potential, and durable resistance. Annual Review of Phytopathology, 40, 349–379.Milgroom, M. G., & Peever, T. L. (2003). Population biology of plant pathogens: the synthesis of plant disease epidemiology and population genetics. Plant Disease, 87, 608–617.Peña, D. (2002). Análisis de datos multivariantes. Madrid: McGraw Hill.Ribeiro, O. (1978). A source book of the genus Phytophthora. Vaduz: Strauss and Cramer. 417 pp.Rullán, J. (1896). Cultivo del naranjo en las Baleares. Soller- España: Imprenta La Sinceridad. 189 pp.Schutte, G. C. (2007). Evaluation of spray programmes for the control of Phytophthora citrophthora on Clementines in the Western Cape. In: CRI annual research report for 2006, pp. 346–354.Stukenbrock, E. H., & McDonald, B. A. (2008). The origins of plant pathogens in agro-ecosystems. Annual Review of Phytopathology, 46, 75–100.Tuset, J. J. (1977). Contribución al conocimiento del género Phytophthora en España. Anales INIA. Series de Protección Vegetal, 7, 11–106.Tuset, J. J. (1983). La gomosis y podredumbre del cuello de la raíz de nuestros agrios. I: aspectos biológicos y patológicos. Levante Agrícola, 246, 90–96.Urquijo, P., Rodriguez-Sardiña, J., & Santaolalla, G. (1961). Patología vegetal agrícola. Salvat Editores S.A. 780 pp.Vernière, C., Cohen, S., Raffanel, B., Dubois, A., Venard, P., & Panabières, F. (2004). Variability in pathogenicity among Phytophthora spp. isolated from citrus in Corsica. Journal of Phytopathology, 152, 476–483.Vial, A., Latorre, B. A., & Ortúzar, J. (2006). Characterization of Phytophthora citrophthora and P. inundata associated to foot and root rot of citrus trees in Chile. Ciencia e Investigación Agraria, 33, 205–216.Waterhouse, G. M. (1963). Key to the species of Phytophthora de Bary. Mycological Papers, 92, 1–22.White, T. J., Bruns, T., Lee, S., & Taylor, J. W. (1990). Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetic. In M. A. Innis, D. H. Gelfand, J. J. Sninsky, & T. J. White (Eds.), PCR Protocols, A guide to methods and applications (pp. 315–322). San Diego: Academic.Zietkiewicz, E., Rafalski, A., & Labuda, D. (1994). Genome fingerprinting by simple sequence repeat (SSR)-anchored polymerase chain reaction amplification. Genomics, 20, 176–183

    First report of Diplodia fraxini causing dieback of Fraxinus angustifolia in Spain

    Full text link
    Elena-Jiménez, G.; León Santana, M.; Abad Campos, P.; Armengol Fortí, J.; Mateu, I.; Güemes, J. (2018). First report of Diplodia fraxini causing dieback of Fraxinus angustifolia in Spain. Plant Disease. 102(12):2645-2645. https://doi.org/10.1094/PDIS-05-18-0792-PDNS264526451021

    Diseases caused by Phytophthora in ornamental plant nurseries

    Full text link
    [EN] Phytophthora is one of the most destructive plant pathogens worldwide and it is responsible for serious economical losses in woody ornamental nurseries. In the last 10 years, surveys in ornamental nurseries have intensified in Europe as a result of the detection of Phytophthora ramomm, the causal agent of sudden oak death. European emergency measures were taken to avoid forther introductions and spread of this pathogen and these included inspections of all nurseries where susceptible hosts were grown. During these surveys it was revealed that other Phytophthora spp. were present causing disease in almost all nurseries. Plants showing leaf spots, twig blight, chlorosis, defoliation, stem cankers, gmnmosis, dieback or root rot symptoms wece sampled. Isolations were made directly from affected tissues onto CMA-PARPBH selective media and PDAS. Phytophthora was isolated consistently from a wide range of ornamental plants in 70% of the nurseries surveyed. It was detected in 136 plants belonging to 22 orders, 29 families and 41 different genera. Thirteen different Phytophthora species were identified based on morphological features and by direct sequencing of the ITS region of ribosomal DNA with the primers ITS4-ITS6: P. cactonnn, P. cinnamomi, P. citrophthora, P. Cryptogea, P. drechsleri, P. hibernalis, P. multivoro, P. nicotianae, P. palmivoro, P. niederhauserii, P. plurivora, P. Syringae y P. tentaculata. The results showed the high incidence of Phytophthora spp. in nurseries, with important economical losses in aromatic plants caused by P. nicotianae that was also the most frequently isolated species. Control measures were recommended to minimiZP. the damage cau>ed by these pathogens and to avoid farther problems with the ultimate goal of reducing their spread in nurseries.[ES] Phytophthora es uno de los patógenos de plantas más destructivos en todo el mundo y es responsable de graves pérdidas económicas en viveros de plantas ornamentales. En los últimos 10 años, como consecuencia de la detección de Phytophthoro ramorum, agente causal de la "muerte súbita del roble" , las inspecciones fitosanitarias en viveros de plantas ornamentales se han intensificado en Europa para evitar la introducción y posterior propagación de este patógeno. Entre las medidas de emergencia adoptadas a nivel europeo se incluyen las inspecciones de todos los viveros en los que se producen hospedantes susceptibles. Estas prospecciones han revelado la presencia en los viveros de otras especies de Phytophthoro, diferentes de P. ramorum. El objetivo de este trabajo fue estudiar las enfermedades causadas por dichas especies. Para ello se prospectaron 23 viveros de plantas ornamentales y se tomaron muestras de plantas con manchas foliares, clorosis, defoliación, muerte de brotes, chancros, gomosis, muerte regresiva y podredumbre radicular. Se realizaron aislamientos directamente de los tejidos afectados en el medio selectivo CMA-PARPBH. Phytophthora fue aislada consistentemente de una amplia gama de plantas ornamentales en el 70% de los viveros prospectados. Se detectó Phytophthora en 136 plantas pertenecientes a 22 órdenes, 29 familias y 41 géneros diferentes. Sobre la base de sus características morfológicas y mediante la secuenciación directa de la región ITS del ADN ribosomal con los cebadores ITS4- ITS6, trece especies de Phytophthora fueron identificadas: P. cactonnn, P. cinnamomi, P. citrophthora, P. Cryptogea, P. drechsleri, P. hibernalis, P. multivoro, P. nicotianae, P. palmivoro, P. niederhauserii, P. plurivora, P. Syringae y P. tentaculata. Los resultados mostraron la alta incidencia de Phytophthoro spp. en viveros, observándose las mayores pérdidas económicas en plantas aromáticas afectadas por P. nicotianae, que fue a su vez la especie que se aisló con mayor frecuencia en este estudio. En todos los casos, se recomendaron medidas de control fitosanitarias, con el objetivo final de minimizar el daño causado, reducir su propagación dentro de las zonas de producción, y evitar su dispersión fuera de las mismas.Este trabajo se ha realizado con financiación del Proyecto AGL2007-64690 (Ministerio de Educación y Ciencia, Fondos FEDER). Agradecemos el apoyo de E. Landeras de Consejería de Agroganadería y Recursos Autóctonos del Principado de Asturias, a L. Álvarez, A. Román, O. Martínez, V. Garrigues de la Universidad Politècnica de València y a todos los viveristas que han participado en estos estudios.Pérez Sierra, AM.; Mora Sala, B.; León Santana, M.; García Jiménez, J.; Abad Campos, P. (2012). Enfermedades causadas por en viveros de plantas ornamentales. Boletin de Sanidad Vegetal: Plagas. 38(1):143-156. http://hdl.handle.net/10251/72990S14315638
    corecore