9,122 research outputs found

    Open charm meson in nuclear matter at finite temperature beyond the zero range approximation

    Full text link
    The properties of open charm mesons, DD, Dˉ\bar D, DsD_s and Dˉs\bar D_s in nuclear matter at finite temperature are studied within a self-consistent coupled-channel approach. The interaction of the low lying pseudoscalar mesons with the ground state baryons in the charm sector is derived from a tt-channel vector-exchange model. The in-medium scattering amplitudes are obtained by solving the Lippmann-Schwinger equation at finite temperature including Pauli blocking effects, as well as DD, Dˉ\bar D, DsD_s and Dˉs\bar D_s self-energies taking their mutual influence into account. We find that the in-medium properties of the DD meson are affected by the DsD_s-meson self-energy through the intermediate DsYD_s Y loops coupled to DNDN states. Similarly, dressing the Dˉ\bar{D} meson in the DˉY\bar{D}Y loops has an influence over the properties of the Dˉs\bar{D}_s meson.Comment: 23 pages, 9 figures, 2 table

    Dynamically generated open charmed baryons beyond the zero range approximation

    Get PDF
    The interaction of the low lying pseudo-scalar mesons with the ground state baryons in the charm sector is studied within a coupled channel approach using a t-channel vector-exchange driving force. The amplitudes describing the scattering of the pseudo-scalar mesons off the ground-state baryons are obtained by solving the Lippmann--Schwinger equation. We analyze in detail the effects of going beyond the t=0t=0 approximation. Our model predicts the dynamical generation of several open charmed baryon resonances in different isospin and strangeness channels, some of which can be clearly identified with recently observed states.Comment: 7 figures, 8 table

    The magnetic precursor of L1448-mm: Excitation differences between ion and neutral fluids

    Full text link
    Shock modelling predicts an electron density enhancement within the magnetic precursor of C-shocks. Previous observations of SiO, H13CO+, HN13C and H13CN toward the young L1448-mm outflow showed an over-excitation of the ion fluid that was attributed to an electron density enhancement in the precursor. We re-visit this interpretation and test if it still holds when we consider different source morphologies and kinetic temperatures for the observed molecules, and also give some insight on the spatial extent of the electron density enhancement around L1448-mm. We estimate the opacities of H13CO+ and HN13C by observing the J=3\to2 lines of rarer isotopologues to confirm that the emission is optically thin. To model the excitation of the molecules, we use the large velocity gradient (LVG) approximation with updated collisional coefficients to i) re- analyse the observations toward the positions where the over-excitation of H13CO+ has previously been observed [i.e. toward L1448- mm at offsets (0,0) and (0,-10)], and ii) to investigate if the electron density enhancement is still required for the cases of extended and compact emission, and for kinetic temperatures of up to 400 K. We also report several lines of SiO, HN13C and H13CO+ toward new positions around this outflow, to investigate the spatial extent of the over-excitation of the ions in L1448-mm. From the isotopologue observations, we find that the emission of H13CO+ and HN13C from the precursor is optically thin if this emission is extended. Using the new collisional coefficients, an electron density enhancement is still needed to explain the excitation of H13CO+ for extended emission and for gas temperatures of\le 400 K toward L1448-mm (0,-10), and possibly also toward L1448-mm (0,0). For compact emission the data cannot be fitted. We do not find any evidence for the over-excitation of the ion fluid toward the newly observed positions around L1448-mm. The observed line emission of SiO, H13CO+ and HN13C toward L1448-mm (0,0) and (0,-10) is consistent with an electron density enhancement in the precursor component, if this emission is spatially extended. This is also true for the case of high gas temperatures (\le400 K) toward the (0,-10) offset. The electron density enhancement seems to be restricted to the southern, redshifted lobe of the L1448-mm outflow. Interferometric images of the line emission of these molecules are needed to confirm the spatial extent of the over-excitation of the ions and thus, of the electron density enhancement in the magnetic precursor of L1448-mm.Comment: Accepted for publication in A&A; 9 pages, 3 figure

    On the evolution of the molecular line profiles induced by the propagation of C-shock waves

    Full text link
    We present the first results of the expected variations of the molecular line emission arising from material recently affected by C-shocks (shock precursors). Our parametric model of the structure of C-shocks has been coupled with a radiative transfer code to calculate the molecular excitation and line profiles of shock tracers such as SiO, and of ion and neutral molecules such as H13CO+ and HN13C, as the shock propagates through the unperturbed medium. Our results show that the SiO emission arising from the early stage of the magnetic precursor typically has very narrow line profiles slightly shifted in velocity with respect to the ambient cloud. This narrow emission is generated in the region where the bulk of the ion fluid has already slipped to larger velocities in the precursor as observed toward the young L1448-mm outflow. This strongly suggests that the detection of narrow SiO emission and of an ion enhancement in young shocks, is produced by the magnetic precursor of C-shocks. In addition, our model shows that the different velocity components observed toward this outflow can be explained by the coexistence of different shocks at different evolutionary stages, within the same beam of the single-dish observations.Comment: 7 pages, 4 figures, accepted for publication in Ap

    Diagnosing shock temperature with NH3_3 and H2_2O profiles

    Get PDF
    In a previous study of the L1157 B1 shocked cavity, a comparison between NH3_3(10_0-000_0) and H2_2O(110_{\rm 10}--101_{\rm 01}) transitions showed a striking difference in the profiles, with H2_2O emitting at definitely higher velocities. This behaviour was explained as a result of the high-temperature gas-phase chemistry occurring in the postshock gas in the B1 cavity of this outflow. If the differences in behaviour between ammonia and water are indeed a consequence of the high gas temperatures reached during the passage of a shock, then one should find such differences to be ubiquitous among chemically rich outflows. In order to determine whether the difference in profiles observed between NH3_3 and H2_2O is unique to L1157 or a common characteristic of chemically rich outflows, we have performed Herschel-HIFI observations of the NH3_3(10_0-00_0) line at 572.5 GHz in a sample of 8 bright low-mass outflow spots already observed in the H2_2O(110_{\rm 10}--101_{\rm 01}) line within the WISH KP. We detected the ammonia emission at high-velocities at most of the outflows positions. In all cases, the water emission reaches higher velocities than NH3_3, proving that this behaviour is not exclusive of the L1157-B1 position. Comparisons with a gas-grain chemical and shock model confirms, for this larger sample, that the behaviour of ammonia is determined principally by the temperature of the gas.Comment: Accepted for publication in the Monthly Notices of the Royal Astronomical Societ

    Quantum tomography via equidistant states

    Full text link
    We study the possibility of performing quantum state tomography via equidistant states. This class of states allows us to propose a non-symmetric informationally complete POVM based tomographic scheme. The scheme is defined for odd dimensions and involves an inversion which can be analytically carried out by Fourier transform
    • …
    corecore