101 research outputs found

    Early assessment of cardiomyopathy in Duchenne patients by means of longitudinal strain echocardiography

    Get PDF
    Introduction: The diagnosis of Duchenne-linked cardiomyopathy may be challenging. Conventional echocardiographic measurements typically show deterioration beyond the second decade. Global longitudinal strain has been proposed as an earlier marker than left ventricular ejection fraction. Material and methods: A prospective, observational, cross-sectional, case-control study was carried out. Both Duchenne patients and control subjects underwent transthoracic echocardiogram in order to assess left ventricle function. Bayesian linear regression was the main tool for inference. Age effects were parameterised by means of a spline function because of its simplicity to characterise continuous variables and smooth contributions. The posterior distribution of the marginal age effects was used to assess the earliest age of deterioration of each marker. Results: Sixteen Duchenne patients and twenty-two healthy male subjects were enrolled. On overage, cardiac function measures were found for ejection fraction and longitudinal strain among different groups. Age effects on global longitudinal strain are more reliably found at ages of 6 and above, while ejection fraction starts to deteriorate at an older age. Progressive left ventricular dysfunction in Duchenne patients is one of the key issues and starts at an early age with subtle symptoms. Conclusion: This cross-sectional study provides supporting evidence that global longitudinal strain is an earlier marker of disease progression than ejection fraction in Duchenne patients

    Experimental infection of European red deer (Cervus elaphus) with bluetongue virus serotypes 1 and 8

    Get PDF
    Short communication.-- et al.Bluetongue (BT) is a climate change-related emerging infectious disease in Europe. Outbreaks of serotypes 1, 2, 4, 6, 8, 9, 11, and 16 are challenging Central and Western Europe since 1998. Measures to control or eradicate bluetongue virus (BTV) from Europe have been implemented, including movement restrictions and vaccination of domestic BTV-susceptible ruminants. However, these measures are difficult to apply in wild free-ranging hosts of the virus, like red deer (Cervus elaphus), which could play a role in the still unclear epidemiology of BT in Europe. We show for the first time that BTV RNA can be detected in European red deer blood for long periods, comparable to those of domestic ruminants, after experimental infection with BTV-1 and BTV-8. BTV RNA was detected in experimentally infected red deer blood up to the end of the study (98¿112 dpi). BTV-specific antibodies were found in serum both by enzyme-linked immunosorbent assay (ELISA) and virus neutralization (VNT) from 8 to 12 dpi to the end of the study, peaking at 17¿28 dpi. Our results indicate that red deer can be infected with BTV and maintain BTV RNA for long periods, remaining essentially asymptomatic. Thus, unvaccinated red deer populations have the potential to be a BT reservoir in Europe, and could threaten the success of the European BTV control strategy. Therefore, wild and farmed red deer should be taken into account for BTV surveillance, and movement restrictions and vaccination schemes applied to domestic animals should be adapted to include farmed or translocated red deer.We acknowledge the funding from JCCM PAI08-0287-8502, the Government of Scotland, and INIA-MARM CC08-020 (additional support to CISA). Caterina Falconi had a grant from the Government of Sardinia.Peer Reviewe

    Common Variation in the PIN1 Locus Increases the Genetic Risk to Suffer from Sertoli Cell-Only Syndrome

    Get PDF
    We aimed to analyze the role of the common genetic variants located in the PIN1 locus, a relevant prolyl isomerase required to control the proliferation of spermatogonial stem cells and the integrity of the blood–testis barrier, in the genetic risk of developing male infertility due to a severe spermatogenic failure (SPGF). Genotyping was performed using TaqMan genotyping assays for three PIN1 taggers (rs2287839, rs2233678 and rs62105751). The study cohort included 715 males diagnosed with SPGF and classified as suffering from non-obstructive azoospermia (NOA, n = 505) or severe oligospermia (SO, n = 210), and 1058 controls from the Iberian Peninsula. The allelic frequency differences between cases and controls were analyzed by the means of logistic regression models. A subtype specific genetic association with the subset of NOA patients classified as suffering from the Sertoli cell-only (SCO) syndrome was observed with the minor alleles showing strong risk effects for this subset (ORaddrs2287839 = 1.85 (1.17–2.93), ORaddrs2233678 = 1.62 (1.11–2.36), ORaddrs62105751 = 1.43 (1.06–1.93)). The causal variants were predicted to affect the binding of key transcription factors and to produce an altered PIN1 gene expression and isoform balance. In conclusion, common non-coding single-nucleotide polymorphisms located in PIN1 increase the genetic risk to develop SCO.Plan Andaluz de Investigacion, Desarrollo e Innovacion (PAIDI 2020) PY20_00212 P20_00583Spanish Ministry of Economy and Competitiveness through the Spanish National Plan for Scientific and Technical Research and Innovation SAF2016-78722-R PID2020-120157RB-I00Proyectos I + D + i del Programa Operativo FEDER 2020 B-CTS-584-UGR20 B-CTS-260-UGR20Spanish Government RYC-2014-16458Spanish Ministry of Economy and Competitiveness through the "Juan de la Cierva Incorporacion" program (MCIN/AEI) IJC2018038026-IEuropean CommissionMCIN/AEIFSE "El FSE invierte en tu futuro" FPU20/02926 BES-2017-081222Portuguese Foundation for Science and Technology (FCT) - European Social Funds (COMPETE-FEDER) Portuguese Foundation for Science and Technology IF/01262/2014FCT from the Portuguese State Budget of the Ministry for Science, Technology and High Education SFRH/BPD/120777/2016European Social Fund through the Programa Operacional do Capital HumanoPortuguese Foundation for Science and Technology European Commission UID/BIM/00009/2013 UIDB/UIDP/00009/2020Instituto de Salud Carlos III (FEDER funds/European Regional Development Fund (ERDF)-a way to build Europe) DTS18/00101Generalitat de Catalunya 2017SGR191SNS-Dpt. Salut Generalitat de Catalunya CES09/020 MCIN/AEI BES-2017-081222 PEstC/SAU/LA0003/2013 POCI-01-0145-FEDER-00727

    FUTUR: Integración del CRIS y del Repositorio Instuticional como portal de investigación de la Universitat Politècnica de Catalunya

    Get PDF
    Comunicación presentada al XIV Workshop Rebiun de Poyectos Digitales / VI Jornadas OS-Repositorios (Córdoba, 11-13 de marzo de 2015)FUTUR, el Portal de la Producción Científica de los Investigadores de la Universitat Politècnica de Catalunya, ha sido desarrollado por el Servicio de Bibliotecas, Publicaciones y Archivos, con la colaboración del Servicio de Información de Investigación, Desarrollo e Innovación gestor del sistema de información de la investigación de la universidad (CRIS). El proyecto ha sido el resultado de la evolución del antiguo portal de investigación de la Universidad y cuyos objetivos son por un lado dar conocer al mundo toda la investigación de todos los investigadores de la Universidad, también incrementar la visibilidad y el impacto de los resultados de la investigación de la UPC en Internet y finalmente ofrecer a todos los investigadores de la Universidad una página personal corporativa. El portal, facilita información académica de los investigadores en activo de la Universidad: profesores, investigadores, investigadores en formación y personal de soporte a la investigación, a partir de la producción científico-técnica introducida por estos en el CRIS, mostrando las actividades de investigación incluidas en el proceso de evaluación de la UPC: las publicaciones, las patentes y los proyectos de investigación realizados. El origen de la información que contiene FUTUR es principalmente el CRIS, infomación complementada con la de los repositorios institucionales UPCommons y TDX/TDR (Tesis Doctorales en Red), el catálogo de la biblioteca, el directorio de personal e Invenes, la base de datos de patentes del gobierno español En el portal muestran tres tipos de contenidos; las actividades (publicaciones, trabajos, presentaciones, premios, tesis, patentes, proyectos RDi, documentos científico-técnicos o informes de investigación entre otros), los datos y actividades de los investigadores vinculados a la Universidad y la información de la actividades de departamentos, centros docentes, institutos y campus. Contenidos acompañados de gráficos e histogramas para una mejor visualización y que el caso de los datos del investigador se le facilita la posibilidad de incorporar información no disponible en las fuentes del portal como fotografía, redes sociales, blogs, palabras clave que definan su actividad etc? La tecnología utilizada para el desarrollo de FUTUR se ha basado en PHP, PostgreSQL, como motor de bases de datos, HTML 5 + CSS 3, Apache Solr como motor de búsqueda y como protocolos y lenguajes de intercambio de datos para la recolección y compartición de estos: SOA, OAI-PMH, RSS y XML. A la vez, la estructura del portal se compone de cuatro módulos: importación, recolección de datos, carga del motor de búsqueda, carga de base de datos y el portal público. Además de la evolución y mejora del anterior portal de investigación, este desarrollo ha permitido mejorar la integración de los sistemas de información y la calidad de la información mostrada, incrementar el trabajo transversal y la colaboración con otras unidades de la Universidad, que nos va a facilitar afrontar nuevos retos como H2020 y la Ley de la Ciencia y seguir avanzando en la política institucional a favor del acceso abierto. Finalmente otro efecto de esta tarea ha sido el aumento del valor y la participación del Servicio de Bibliotecas en el flujo de trabajo de la investigación. El portal, ha contribuido a dar más servicios a los investigadores como el soporte a la creación de identificadores personales (ORCID, etc.), mostrar la información que de ellos aparece en Google Scholar o la ayuda en trámites para la obtención de tramos de investigación En explotación desde abril de 2014, se está trabajando en nuevas funcionalidades como estadísticas de consulta, la exportación a formatos como Excel y BIBTex, la viabilidad de enviar e importar datos de ORCID o la importación de CORDIS. En enero de 2015, la información disponible en el portal ha referencia a 3.288 investigadores, 303 unidades (departamentos, institutos, campus,?) 179.204 publicaciones, 4.826 tesis doctorales, 953 patentes y 9.715 proyectos I + D de investigación

    Evaluation of male fertility-associated loci in a european population of patients with severe spermatogenic impairment

    Get PDF
    Funding: This work was supported by the Spanish Ministry of Economy and Competitiveness through the Spanish State Plan for Scientific and Technical Research and Innovation (ref. SAF2016-78722-R), the “Ramón y Cajal” program (ref. RYC-2014-16458), and the “Juan de la Cierva Incorporación” program (ref. IJC2018-038026-I), which include FEDER funds. SLa received support from the Spanish Ministry of Science and Innovation (grants FIS-ISCIII DTS18/00101, co-funded by FEDER funds/European Regional Development Fund (ERDF)-a way to build Europe-), and from Generalitat de Catalunya (grant 2017SGR191). AG-J was recipient of a grant from the “Plan Propio” program of the University of Granada (“Becas de Iniciación a la Investigación para estudiantes de Grado”, conv.2019). SLa is sponsored by the “Researchers Consolidation Program” from the SNS-Dpt. Salut Generalitat de Catalunya (Exp. CES09/020). JG was partially funded by FCT/MCTES, through national funds attributed to Center for Toxicogenomics and Human Health—ToxOmics (UIDB/00009/2020). PIM is supported by the FCT post-doctoral fellowship (SFRH/BPD/120777/2016), financed from the Portuguese State Budget of the Ministry for Science, Technology and High Education and from the European Social Fund, available through the Programa Operacional do Capital Humano. AML is funded by the Portuguese Government through FCT (IF/01262/2014). IPATIMUP integrates the i3S Research Unit, which is partially supported by FCT in the framework of the project “Institute for Research and Innovation in Health Sciences” (POCI-01-0145-FEDER-007274).Infertility is a growing concern in developed societies. Two extreme phenotypes of male infertility are non-obstructive azoospermia (NOA) and severe oligospermia (SO), which are characterized by severe spermatogenic failure (SpF). We designed a genetic association study comprising 725 Iberian infertile men as a consequence of SpF and 1058 unaffected controls to evaluate whether five single-nucleotide polymorphisms (SNPs), previously associated with reduced fertility in Hutterites, are also involved in the genetic susceptibility to idiopathic SpF and specific clinical entities. A significant difference in the allele frequencies of USP8-rs7174015 was observed under the recessive model between the NOA group and both the control group (p = 0.0226, OR = 1.33) and the SO group (p = 0.0048, OR = 1.78). Other genetic associations for EPSTI1-rs12870438 and PSAT1-rs7867029 with SO and between TUSC1-rs10966811 and testicular sperm extraction (TESE) success in the context of NOA were observed. In silico analysis of functional annotations demonstrated cis-eQTL effects of such SNPs likely due to the modification of binding motif sites for relevant transcription factors of the spermatogenic process. The findings reported here shed light on the molecular mechanisms leading to severe phenotypes of idiopathic male infertility, and may help to better understand the contribution of the common genetic variation to the development of these conditions.publishersversionpublishe

    Contribution of TEX15 genetic variants to the risk of developing severe non-obstructive oligozoospermia

    Full text link
    Background: Severe spermatogenic failure (SPGF) represents one of the most relevant causes of male infertility. This pathological condition can lead to extreme abnormalities in the seminal sperm count, such as severe oligozoospermia (SO) or non-obstructive azoospermia (NOA). Most cases of SPGF have an unknown aetiology, and it is known that this idiopathic form of male infertility represents a complex condition. In this study, we aimed to evaluate whether common genetic variation in TEX15, which encodes a key player in spermatogenesis, is involved in the susceptibility to idiopathic SPGF.Materials and Methods: We designed a genetic association study comprising a total of 727 SPGF cases (including 527 NOA and 200 SO) and 1,058 unaffected men from the Iberian Peninsula. Following a tagging strategy, three tag single-nucleotide polymorphisms (SNPs) of TEX15 (rs1362912, rs323342, and rs323346) were selected for genotyping using TaqMan probes. Case-control association tests were then performed by logistic regression models. In silico analyses were also carried out to shed light into the putative functional implications of the studied variants.Results: A significant increase in TEX15-rs1362912 minor allele frequency (MAF) was observed in the group of SO patients (MAF = 0.0842) compared to either the control cohort (MAF = 0.0468, OR = 1.90, p = 7.47E-03) or the NOA group (MAF = 0.0472, OR = 1.83, p = 1.23E-02). The genotype distribution of the SO population was also different from those of both control (p = 1.14E-02) and NOA groups (p = 4.33-02). The analysis of functional annotations of the human genome suggested that the effect of the SO-associated TEX15 variants is likely exerted by alteration of the binding affinity of crucial transcription factors for spermatogenesis.Conclusion: Our results suggest that common variation in TEX15 is involved in the genetic predisposition to SO, thus supporting the notion of idiopathic SPGF as a complex trait

    Contribution of TEX15 genetic variants to the risk of developing severe non-obstructive oligozoospermia

    Get PDF
    Lisbon clinical group co-authors and IVIRMA group co-authors Ana Aguiar, (Unidade de Medicina da Reproducao, Hospital de Santa Maria, Centro Hospitalar Lisboa Norte, Lisboa, Portugal); Carlos Calhaz-Jorge, (Unidade de Medicina da Reproducao, Hospital de Santa Maria, Centro Hospitalar Lisboa Norte, Lisboa, Portugal); Joaquim Nunes, (Unidade de Medicina da Reproducao, Hospital de Santa Maria, Centro Hospitalar Lisboa Norte, Lisboa, Portugal); Sandra Sousa (Unidade de Medicina da Reproducao, Hospital de Santa Maria, Centro Hospitalar Lisboa Norte, Lisboa, Portugal), and Sónia Correia (Centro de Medicina Reprodutiva, Maternidade Alfredo da Costa, Centro Hospitalar Lisboa Central, Lisboa, Portugal); Maria Graça Pinto(Centro de Medicina Reprodutiva, Maternidade Alfredo da Costa, Centro Hospitalar Lisboa Central, Lisboa, Portugal). Alberto Pacheco, (IVIRMA Madrid, Spain); Cristina González, (IVIRMA Sevilla, Spain); Susana Gómez, (IVIRMA Lisboa, Portugal); David Amorós, (IVIRMA Barcelona, Spain); Jesús Aguilar, (IVIRMA Vigo, Spain); Fernando Quintana, (IVIRMA Bilbao, Spain).Background: Severe spermatogenic failure (SPGF) represents one of the most relevant causes of male infertility. This pathological condition can lead to extreme abnormalities in the seminal sperm count, such as severe oligozoospermia (SO) or non-obstructive azoospermia (NOA). Most cases of SPGF have an unknown aetiology, and it is known that this idiopathic form of male infertility represents a complex condition. In this study, we aimed to evaluate whether common genetic variation in TEX15, which encodes a key player in spermatogenesis, is involved in the susceptibility to idiopathic SPGF. Materials and Methods: We designed a genetic association study comprising a total of 727 SPGF cases (including 527 NOA and 200 SO) and 1,058 unaffected men from the Iberian Peninsula. Following a tagging strategy, three tag single-nucleotide polymorphisms (SNPs) of TEX15 (rs1362912, rs323342, and rs323346) were selected for genotyping using TaqMan probes. Case-control association tests were then performed by logistic regression models. In silico analyses were also carried out to shed light into the putative functional implications of the studied variants. Results: A significant increase in TEX15-rs1362912 minor allele frequency (MAF) was observed in the group of SO patients (MAF = 0.0842) compared to either the control cohort (MAF = 0.0468, OR = 1.90, p = 7.47E-03) or the NOA group (MAF = 0.0472, OR = 1.83, p = 1.23E-02). The genotype distribution of the SO population was also different from those of both control (p = 1.14E-02) and NOA groups (p = 4.33–02). The analysis of functional annotations of the human genome suggested that the effect of the SO-associated TEX15 variants is likely exerted by alteration of the binding affinity of crucial transcription factors for spermatogenesis. Conclusion: Our results suggest that common variation in TEX15 is involved in the genetic predisposition to SO, thus supporting the notion of idiopathic SPGF as a complex trait.This work was supported by the Spanish Ministry of Science and Innovation through the Spanish National Plan for Scientific and Technical Research and Innovation (PID 2020-120157RB-I00) and the Andalusian Government through the research projects of “Plan Andaluz de Investigacion, Desarrollo e Innovacion (PAIDI 2020)” (ref. PY20_00212) and “Programa Operativo FEDER 2020” (ref. B-CTS-584-UGR20). LB-C was supported by the Spanish Ministry of Science and Innovation through the “Juan de la Cierva Incorporacion” program (Grant ref. IJC 2018-038026- I, funded by MCIN/AEI/10.13039/501100011033), which includes FEDER funds. AG-J was funded by MCIN/AEI/ 10.13039/501100011033 and FSE “El FSE invierte en tu futuro” (grant ref. FPU20/02926). IPATIMUP integrates the i3S Research Unit, which is partially supported by the Portuguese Foundation for Science and Technology (FCT), financed by the European Social Funds (COMPETE-FEDER) and National Funds (projects PEstC/SAU/LA0003/2013 and POCI-01-0145-FEDER-007274). PM is supported by the FCT post-doctoral fellowship (SFRH/BPD/120777/2016), financed from the Portuguese State Budget of the Ministry for Science, Technology and High Education and from the European Social Fund, available through the Programa Operacional do Capital Humano. ToxOmics—Centre for Toxicogenomics and Human Health, Genetics, Oncology and Human Toxicology, Nova Medical School, Lisbon, is also partially supported by FCT (UID/BIM/00009/2016 and UIDB/00009/2020). SL received support from Instituto de Salud Carlos III (grant: DTS18/00101], co-funded by FEDER funds/European Regional Development Fund (ERDF)-a way to build Europe-), and from “Generalitat de Catalunya” (grant 2017SGR191). SL is sponsored by the “Researchers Consolidation Program” from the SNS-Dpt. Salut Generalitat de Catalunya (Exp. CES09/020). This article is related to the Ph.D. Doctoral Thesis of AG-J.info:eu-repo/semantics/publishedVersio

    Common Variation in the PIN1 Locus Increases the Genetic Risk to Suffer from Sertoli Cell-Only Syndrome

    Get PDF
    Funding Information: Funding: This work was supported by the Plan Andaluz de Investigación, Desarrollo e Innovación (PAIDI 2020) (ref. PY20_00212, P20_00583), and the Spanish Ministry of Economy and Competitiveness through the Spanish National Plan for Scientific and Technical Research and Innovation (ref. SAF2016–78722-R, PID2020–120157RB-I00) and the Proyectos I + D + i del Programa Operativo FEDER 2020 (ref. B-CTS-584-UGR20, B-CTS-260-UGR20). FDC was supported by the “Ramón y Cajal” program (ref. RYC-2014–16458), and LBC was supported by the Spanish Ministry of Economy and Competitiveness through the “Juan de la Cierva Incorporación” program (Grant ref. IJC2018– 038026-I, funded by MCIN/AEI/10.13039/501100011033), all of them including FEDER funds. AGJ was funded by MCIN/AEI/10.13039/501100011033 and FSE “El FSE invierte en tu futuro”(grant ref. FPU20/02926). SGM was funded by a previously mentioned project (ref. PY20_00212). IPATIMUP integrates the i3S Research Unit, which is partially supported by the Portuguese Foundation for Science and Technology (FCT), financed by the European Social Funds (COMPETE-FEDER) and National Funds (projects PEstC/SAU/LA0003/2013 and POCI-01–0145-FEDER-007274). AML is funded by the Portuguese Government through FCT (IF/01262/2014). PIM is supported by the FCT post-doctoral fellowship (SFRH/BPD/120777/2016), financed from the Portuguese State Budget of the Ministry for Science, Technology and High Education and from the European Social Fund, available through the Programa Operacional do Capital Humano. ToxOmics—Centre for Toxicogenomics and Human Health, Genetics, Oncology and Human Toxicology, Nova Medical School, Lisbon, is also partially supported by FCT (Projects: UID/BIM/00009/2013 and UIDB/UIDP/00009/2020). SLarriba received support from Instituto de Salud Carlos III (grant DTS18/00101], co-funded by FEDER funds/European Regional Development Fund (ERDF)—a way to build Europe), and from “Generalitat de Catalunya” (grant 2017SGR191). SLarriba is sponsored by the “Researchers Consolidation Program” from the SNS-Dpt. Salut Generalitat de Catalunya (Exp. CES09/020). This article is related to the Ph.D. Doctoral Thesis of Miriam Cerván-Martín (grant ref. BES-2017–081222 funded by MCIN/AEI/10.13039/501100011033 and FSE “El FSE invierte en tu futuro”). Publisher Copyright: © 2022 by the authors. Licensee MDPI, Basel, Switzerland.We aimed to analyze the role of the common genetic variants located in the PIN1 locus, a relevant prolyl isomerase required to control the proliferation of spermatogonial stem cells and the integrity of the blood–testis barrier, in the genetic risk of developing male infertility due to a severe spermatogenic failure (SPGF). Genotyping was performed using TaqMan genotyping assays for three PIN1 taggers (rs2287839, rs2233678 and rs62105751). The study cohort included 715 males diagnosed with SPGF and classified as suffering from non-obstructive azoospermia (NOA, n = 505) or severe oligospermia (SO, n = 210), and 1058 controls from the Iberian Peninsula. The allelic frequency differences between cases and controls were analyzed by the means of logistic regression models. A subtype specific genetic association with the subset of NOA patients classified as suffering from the Sertoli cell-only (SCO) syndrome was observed with the minor alleles showing strong risk effects for this subset (ORaddrs2287839 = 1.85 (1.17–2.93), ORaddrs2233678 = 1.62 (1.11–2.36), ORaddrs62105751 = 1.43 (1.06–1.93)). The causal variants were predicted to affect the binding of key transcription factors and to produce an altered PIN1 gene expression and isoform balance. In conclusion, common non-coding single-nucleotide polymorphisms located in PIN1 increase the genetic risk to develop SCO.publishersversionpublishe
    corecore