8 research outputs found

    Structural brain network measures are superior to vascular burden scores in predicting early cognitive impairment in post stroke patients with small vessel disease

    No full text
    Objectives: In this cross-sectional study, we aimed to explore the mechanisms of early cognitive impairment in a post stroke non-dementia cerebral small vessel disease (SVD) cohort by comparing the SVD score with the structural brain network measures. Method: 127 SVD patients were recruited consecutively from a stroke clinic, comprising 76 individuals with mild cognitive impairment (MCI) and 51 with no cognitive impairment (NCI). Detailed neuropsychological assessments and multimodal MRI were performed. SVD scores were calculated on a standard scale, and structural brain network measures were analyzed by diffusion tensor imaging (DTI). Between-group differences were analyzed, and logistic regression was applied to determine the predictive value of SVD and network measures for cognitive status. Mediation analysis with structural equation modeling (SEM) was used to better understand the interactions of SVD burden, brain networks and cognitive deficits. Results: Group difference was found on all global brain network measures. After adjustment for age, gender, education and depression, significant correlations were found between global brain network measures and diverse neuropsychological tests, including TMT-B (r = −0.209, p < .05), DSST (r = 0.206, p < .05), AVLT short term free recall (r = 0.233, p < .05), AVLT long term free recall (r = 0.264, p < .05) and Rey-O copy (r = 0.272, p < .05). SVD score showed no group difference and was not correlated with cognition tests. Network global efficiency (EGlobal) was significantly related to cognitive state (p < .01) but not the SVD score. Mediation analysis showed that the standardized total effect (p = .013) and the standardized indirect effect (p = .016) of SVD score on cognition was significant, but the direct effect was not. Conclusions: Brain network measures, but not the SVD score, are significantly correlated with cognition in post-stroke SVD patients. Mediation analysis showed that the cerebral vascular lesions produce cognitive dysfunction by interfering with the structural brain network in SVD patients. The brain network measures may be regarded as direct and independent surrogate markers of cognitive impairment in SVD. Keywords: Cerebral small vessel disease, Cognitive impairment, SVD score, Brain network

    Endothelial progenitor cells transplantation attenuated blood-brain barrier damage after ischemia in diabetic mice via HIF-1α

    No full text
    Abstract Background Blood-brain barrier impairment is a major indicator of endothelial dysfunction in diabetes. Studies showed that endothelial progenitor cell (EPC) transplantation promoted angiogenesis and improved function recovery after hind limb ischemia in diabetic mice. The effect of EPC transplantation on blood-brain barrier integrity after cerebral ischemia in diabetic animals is unknown. The aim of this study is to explore the effect of EPC transplantation on the integrity of the blood-brain barrier after cerebral ischemia in diabetic mice. Methods EPCs were isolated by density gradient centrifugation and characterized by flow cytometry and immunostaining. Diabetes was induced in adult male C57BL/6 mice by a single injection of streptozotocin at 4 weeks before surgery. Diabetic mice underwent 90-minute transient middle cerebral artery occlusion surgery and received 1 × 106 EPCs transplantation immediately after reperfusion. Brain infarct volume, blood-brain barrier permeability, tight junction protein expression, and hypoxia inducible factor-1α (HIF-1α) mRNA level were examined after treatment. Results We demonstrated that neurological deficits were attenuated and brain infarct volume was reduced in EPC-transplanted diabetic mice after transient cerebral ischemia compared to the controls (p < 0.05). Blood-brain barrier leakage and tight junction protein degradation were reduced in EPC-transplanted mice (p <0.05). EPCs upregulated HIF-1α expression while HIF-1α inhibitor PX-478 abolished the beneficial effect of EPCs. Conclusions We conclude that EPCs protected blood-brain barrier integrity after focal ischemia in diabetic mice through upregulation of HIF-1α signaling

    Simultaneous Imaging of Cerebrovascular Structure and Function in Hypertensive Rats Using Synchrotron Radiation Angiography

    No full text
    Hypertension has a profound influence on the structure and function of blood vessels. Cerebral vessels undergo both structural and functional changes in hypertensive animals. However, dynamic changes of cerebrovasculature and the factors involved in this process are largely unknown. In this study, we explored the dynamic changes of vascular structure in hypertensive rats using novel synchrotron radiation angiography. Twenty-four spontaneously hypertensive rats (SHR) and 24 Sprague–Dawley (SD) rats underwent synchrotron radiation (SR) angiography. Each group had 8 animals. We studied the cerebral vascular changes in SHR over a time period of 3–12-month and performed quantitative analysis. No vascular morphology differences between SHR and SD rats were observed in the early stage of hypertension. The number of twisted blood vessels in the front brain significantly increased at the 9- and 12-month observation time-points in the SHR compared to the SD rats (p &lt; 0.01). The vessel density of the cortex and the striatum in SHR was consistently higher than that in SD rats at time points of 3-, 9-, and 12-month (p &lt; 0.001). Vascular elasticity decreased both in SHR and SD rats with aging. There were statistically significant differences in the relative vascular elasticity of extracranial/intracranial internal carotid artery, middle cerebral artery, posterior cerebral artery and anterior cerebral artery between SHR and SD rats at 12-month (p &lt; 0.01). We concluded that the dynamic vascular alterations detected by SR angiography provided novel imaging data for the study of hypertension in vivo. The longer the course of hypertension was, the more obvious the vascular differences between the SHR and the SD rats became

    Blood-Brain Barrier Disruption Induced Cognitive Impairment Is Associated With Increase of Inflammatory Cytokine

    No full text
    Patients with diabetes suffer the higher risk of dementia and the underlying pathological mechanism of cognitive dysfunction in diabetes is not fully understood. In this study, we explore whether the cognitive impairment in the diabetic rat is associated with increased blood brain barrier (BBB) permeability and the change of the inflammatory cytokine. Experimental diabetic rats were induced by single intraperitoneal injection of streptozotocin (STZ). Cognitive function was evaluated by Morris water maze in the normal and the diabetic rats, respectively. The spatial acquisition trials were conducted over five consecutive days and the probe test was performed on day 6, followed by working memory test on the next 4 days. Escape latency was recorded in the acquisition trials and working memory test; time spent in the target quadrant and the number of crossing the former platform were recorded in the probe test. BBB permeability was assessed by measuring the extravasation of IgG. The image of occludin and claudin-5 staining by a confocal microscope were acquired to measure the gap in the tight junction. Cytokines TNF-α, IL-1β and IL-6 mRNA expression were further examined by Real-time PCR. The time spent in the target quadrant within 30 s decreased in the 8-week STZ rats compared to that of the normal rats (p &lt; 0.05), while no difference was seen in the performance of working memory between the diabetic and normal rats. IgG leakage significantly increased in the brain parenchyma of the 8-week STZ rats compared to the normal rats (p &lt; 0.05). The immunostaining of occludin and claudin-5 suggested the gap in the tight junction increased in the 8-week STZ rats compared to the normal rats (p &lt; 0.05). Moreover, TNF-α and IL-6 mRNA also increased in the brain of 8-week STZ rats compared to the normal rats (p &lt; 0.05). These results suggested that loss of BBB integrity might contribute to progressive impairment of cognitive in the diabetic rats. The increase of TNF-α and IL-6 expression might trigger the disruption of BBB in the brain, which eventually caused cognitive impairment in the 8-week STZ rats

    Data_Sheet_1_Blood-Brain Barrier Disruption Induced Cognitive Impairment Is Associated With Increase of Inflammatory Cytokine.PDF

    No full text
    <p>Patients with diabetes suffer the higher risk of dementia and the underlying pathological mechanism of cognitive dysfunction in diabetes is not fully understood. In this study, we explore whether the cognitive impairment in the diabetic rat is associated with increased blood brain barrier (BBB) permeability and the change of the inflammatory cytokine. Experimental diabetic rats were induced by single intraperitoneal injection of streptozotocin (STZ). Cognitive function was evaluated by Morris water maze in the normal and the diabetic rats, respectively. The spatial acquisition trials were conducted over five consecutive days and the probe test was performed on day 6, followed by working memory test on the next 4 days. Escape latency was recorded in the acquisition trials and working memory test; time spent in the target quadrant and the number of crossing the former platform were recorded in the probe test. BBB permeability was assessed by measuring the extravasation of IgG. The image of occludin and claudin-5 staining by a confocal microscope were acquired to measure the gap in the tight junction. Cytokines TNF-α, IL-1β and IL-6 mRNA expression were further examined by Real-time PCR. The time spent in the target quadrant within 30 s decreased in the 8-week STZ rats compared to that of the normal rats (p < 0.05), while no difference was seen in the performance of working memory between the diabetic and normal rats. IgG leakage significantly increased in the brain parenchyma of the 8-week STZ rats compared to the normal rats (p < 0.05). The immunostaining of occludin and claudin-5 suggested the gap in the tight junction increased in the 8-week STZ rats compared to the normal rats (p < 0.05). Moreover, TNF-α and IL-6 mRNA also increased in the brain of 8-week STZ rats compared to the normal rats (p < 0.05). These results suggested that loss of BBB integrity might contribute to progressive impairment of cognitive in the diabetic rats. The increase of TNF-α and IL-6 expression might trigger the disruption of BBB in the brain, which eventually caused cognitive impairment in the 8-week STZ rats.</p
    corecore