51 research outputs found

    Reducing the environmental impact of surgery on a global scale: systematic review and co-prioritization with healthcare workers in 132 countries

    Get PDF
    Abstract Background Healthcare cannot achieve net-zero carbon without addressing operating theatres. The aim of this study was to prioritize feasible interventions to reduce the environmental impact of operating theatres. Methods This study adopted a four-phase Delphi consensus co-prioritization methodology. In phase 1, a systematic review of published interventions and global consultation of perioperative healthcare professionals were used to longlist interventions. In phase 2, iterative thematic analysis consolidated comparable interventions into a shortlist. In phase 3, the shortlist was co-prioritized based on patient and clinician views on acceptability, feasibility, and safety. In phase 4, ranked lists of interventions were presented by their relevance to high-income countries and low–middle-income countries. Results In phase 1, 43 interventions were identified, which had low uptake in practice according to 3042 professionals globally. In phase 2, a shortlist of 15 intervention domains was generated. In phase 3, interventions were deemed acceptable for more than 90 per cent of patients except for reducing general anaesthesia (84 per cent) and re-sterilization of ‘single-use’ consumables (86 per cent). In phase 4, the top three shortlisted interventions for high-income countries were: introducing recycling; reducing use of anaesthetic gases; and appropriate clinical waste processing. In phase 4, the top three shortlisted interventions for low–middle-income countries were: introducing reusable surgical devices; reducing use of consumables; and reducing the use of general anaesthesia. Conclusion This is a step toward environmentally sustainable operating environments with actionable interventions applicable to both high– and low–middle–income countries

    Optimization Strategy for Output Voltage of CCM Flyback Converter Based on Linear Active Disturbance Rejection Control

    No full text
    To solve the problem of system output voltage fluctuation caused by interferences such as load fluctuation and internal inductor parameter perturbation in a flyback converter, a second-order linear active disturbance rejection control (LADRC) strategy based on output voltage is proposed in this paper. A small-signal model of a CCM flyback converter is established, and the equivalent transfer function of voltage control based on second-order LADRC is derived. A second-order LADRC is constructed, and a parameter design method for the controller is proposed. The response characteristics of the output voltage of the converter under five internal and external disturbances of different control strategies are compared and studied using MATLAB R2022b/Simulink simulation software, and a CCM flyback converter experimental platform based on dSPACE is built to verify the corresponding comparative experiments. The simulation and experimental results jointly verify the superiority of the control strategy for the anti-interference and robustness of the output voltage of the CCM flyback converter

    Classification of Citrus Huanglongbing Degree Based on CBAM-MobileNetV2 and Transfer Learning

    No full text
    Citrus has become a pivotal industry for the rapid development of agriculture and increasing farmers’ incomes in the main production areas of southern China. Knowing how to diagnose and control citrus huanglongbing has always been a challenge for fruit farmers. To promptly recognize the diagnosis of citrus huanglongbing, a new classification model of citrus huanglongbing was established based on MobileNetV2 with a convolutional block attention module (CBAM-MobileNetV2) and transfer learning. First, the convolution features were extracted using convolution modules to capture high-level object-based information. Second, an attention module was utilized to capture interesting semantic information. Third, the convolution module and attention module were combined to fuse these two types of information. Last, a new fully connected layer and a softmax layer were established. The collected 751 citrus huanglongbing images, with sizes of 3648 × 2736, were divided into early, middle, and late leaf images with different disease degrees, and were enhanced to 6008 leaf images with sizes of 512 × 512, including 2360 early citrus huanglongbing images, 2024 middle citrus huanglongbing images, and 1624 late citrus huanglongbing images. In total, 80% and 20% of the collected citrus huanglongbing images were assigned to the training set and the test set, respectively. The effects of different transfer learning methods, different model training effects, and initial learning rates on model performance were analyzed. The results show that with the same model and initial learning rate, the transfer learning method of parameter fine tuning was obviously better than the transfer learning method of parameter freezing, and that the recognition accuracy of the test set improved by 1.02~13.6%. The recognition accuracy of the citrus huanglongbing image recognition model based on CBAM-MobileNetV2 and transfer learning was 98.75% at an initial learning rate of 0.001, and the loss value was 0.0748. The accuracy rates of the MobileNetV2, Xception, and InceptionV3 network models were 98.14%, 96.96%, and 97.55%, respectively, and the effect was not as significant as that of CBAM-MobileNetV2. Therefore, based on CBAM-MobileNetV2 and transfer learning, an image recognition model of citrus huanglongbing images with high recognition accuracy could be constructed

    Comparison of Citrus Leaf Water Content Estimations Based on the Continuous Wavelet Transform and Fractional Derivative Methods

    No full text
    Citrus tangerines are famous fruits worldwide, and monitoring the water content of citrus leaves is highly important for citrus production. However, there are still challenges in quantitatively estimating the water content of citrus leaves using hyperspectral technology, and the random noise generated during spectral acquisition and the overlapping peaks in the sensitive band of the citrus leaf water content will affect estimation accuracy. To solve these problems and further explore the roles of the continuous wavelet transform (CWT) and fractional-order derivative (FOD) in the estimation of citrus leaf water content, this study intends to use of CWT and FOD to decompose the original spectrum, and then compare the correlation between the original spectrum and leaf water content to explore whether the decomposition treatment has improved the correlation between spectrum and leaf moisture content. Then, the successive projections algorithm (SPA) was used to select feature bands and combine spectral vegetation indices. Partial least squares regression (PLSR) was used to construct water-content inversion models for citrus leaves, and the inversion accuracies of two commonly used spectral preprocessing methods were compared. The results indicate that (1) the CWT can improve the sensitivity of the spectrum to the citrus leaf water content to a certain extent, and the inversion accuracy of the CWT is approximately 5% greater than that of the FOD. (2) On the basis of the CWT and FOD methods, the inversion accuracy of the citrus leaf water content based on SPA screening increased by 9.61% and 9.29%, respectively, compared with the original spectrum. (3) Under CWT decomposition, Scale4 of the Gaus1 wavelet was screened by the SPA, and the inversion model of citrus leaf water content was constructed by combining the spectral vegetation index NDVI with the best results. The R-squared (R2) and root mean square error (RMSE) values were 0.7491 and 0.0284, respectively, which were both 0.0138 greater than those of the best inversion model for the FOD R2. In conclusion, the CWT-SPA combined with the spectral vegetation index can improve the sensitivity of the spectrum to the citrus leaf water content, eliminate a large amount of redundant data, and enhance the prediction ability and stability of the citrus leaf water content

    Optimizing the YOLOv7-Tiny Model with Multiple Strategies for Citrus Fruit Yield Estimation in Complex Scenarios

    No full text
    The accurate identification of citrus fruits is important for fruit yield estimation in complex citrus orchards. In this study, the YOLOv7-tiny-BVP network is constructed based on the YOLOv7-tiny network, with citrus fruits as the research object. This network introduces a BiFormer bilevel routing attention mechanism, which replaces regular convolution with GSConv, adds the VoVGSCSP module to the neck network, and replaces the simplified efficient layer aggregation network (ELAN) with partial convolution (PConv) in the backbone network. The improved model significantly reduces the number of model parameters and the model inference time, while maintaining the network’s high recognition rate for citrus fruits. The results showed that the fruit recognition accuracy of the modified model was 97.9% on the test dataset. Compared with the YOLOv7-tiny, the number of parameters and the size of the improved network were reduced by 38.47% and 4.6 MB, respectively. Moreover, the recognition accuracy, frames per second (FPS), and F1 score improved by 0.9, 2.02, and 1%, respectively. The network model proposed in this paper has an accuracy of 97.9% even after the parameters are reduced by 38.47%, and the model size is only 7.7 MB, which provides a new idea for the development of a lightweight target detection model

    Additional file 17 of Implicating genes, pleiotropy, and sexual dimorphism at blood lipid loci through multi-ancestry meta-analysis

    No full text
    Additional file 17: Table S9. PheWAS UKB-MVP meta-analysis results for each index lipid variant at Bonferroni threshold for multiple testing
    corecore