10 research outputs found

    Oral particle uptake and organ targeting drives the activity of amphotericin B nanoparticles

    Get PDF
    There are very few drug delivery systems that target key organs via the oral route, as oral delivery advances normally address gastrointestinal drug dissolution, permeation, and stability. Here we introduce a nanomedicine in which nanoparticles, while also protecting the drug from gastric degradation, are taken up by the gastrointestinal epithelia and transported to the lung, liver, and spleen, thus selectively enhancing drug bioavailability in these target organs and diminishing kidney exposure (relevant to nephrotoxic drugs). Our work demonstrates, for the first time, that oral particle uptake and translocation to specific organs may be used to achieve a beneficial therapeutic response. We have illustrated this using amphotericin B, a nephrotoxic drug encapsulated within <i>N</i>-palmitoyl-<i>N</i>-methyl-<i>N</i>,<i>N</i>-dimethyl-<i>N</i>,<i>N</i>,<i>N</i>-trimethyl-6-<i>O</i>-glycol chitosan (GCPQ) nanoparticles, and have evidenced our approach in three separate disease states (visceral leishmaniasis, candidiasis, and aspergillosis) using industry standard models of the disease in small animals. The oral bioavailability of AmB-GCPQ nanoparticles is 24%. In all disease models, AmB-GCPQ nanoparticles show comparable efficacy to parenteral liposomal AmB (AmBisome). Our work thus paves the way for others to use nanoparticles to achieve a specific targeted delivery of drug to key organs via the oral route. This is especially important for drugs with a narrow therapeutic index

    Amide chemical exchange saturation transfer at 7T : A possible biomarker for detecting early response to neoadjuvant chemotherapy in breast cancer patients

    No full text
    Background: The purpose of this work was to investigate noninvasive early detection of treatment response of breast cancer patients to neoadjuvant chemotherapy (NAC) using chemical exchange saturation transfer (CEST) measurements sensitive to amide proton transfer (APT) at 7T. Methods: CEST images were acquired in 10 tumors of nine breast cancer patients treated with NAC. APT signals in the tumor, before and after the first cycle of NAC, were quantified using a three-pool Lorentzian fit of the z-spectra in the region of interest. The changes in APT were subsequently related to pathological response after surgery defined by the Miller-Payne system. Results: Significant differences (P0.05, Kruskal-Wallis test). Conclusions: This preliminary study shows the feasibility of using APT CEST magnetic resonance imaging as a noninvasive biomarker to assess the effect of NAC in an early stage of NAC treatment of breast cancer patients

    Phase I Dose escalation study with expansion cohort of the addition of nab-paclitaxel to capecitabine and oxaliplatin (CapOx) as first-line treatment of metastatic esophagogastric adenocarcinoma (ACTION study)

    No full text
    First-line triplet chemotherapy including a taxane may prolong survival in patients with metastatic esophagogastric cancer. The added toxicity of the taxane might be minimized by using nab-paclitaxel. The aim of this phase I study was to determine the feasibility of combining nab-paclitaxel with the standard of care in the Netherlands, capecitabine and oxaliplatin (CapOx). Patients with metastatic esophagogastric adenocarcinoma received oxaliplatin 65 mg/m2 on days 1 and 8, and capecitabine 1000 mg/m2 bid on days 1–14 in a 21-day cycle, with nab-paclitaxel on days 1 and 8 at four dose levels (60, 80, 100, and 120 mg/m2, respectively), using a standard 3 + 3 dose escalation phase, followed by a safety expansion cohort. Baseline tissue and serum markers for activated tumor stroma were assessed as biomarkers for response and survival. Twenty-six patients were included. The first two dose-limiting toxicities (i.e., diarrhea and dehydration) occurred at dose level 3. The resulting maximum tolerable dose (MTD) of 80 mg/m2 was used in the expansion cohort, but was reduced to 60 mg/m2 after three out of eight patients experienced diarrhea grade 3. The objective response rate was 54%. The median progression-free (PFS) and overall survival were 8.0 and 12.8 months, respectively. High baseline serum ADAM12 was associated with a significantly shorter PFS (p = 0.011). In conclusion, albeit that the addition of nab-paclitaxel 60 mg/m2 to CapOx may be better tolerated than other taxane triplets, relevant toxicity was observed. There is a rationale for preserving taxanes for later-line treatment. ADAM12 is a potential biomarker to predict survival, and warrants further investigation
    corecore