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Abstract  

There are very few drug delivery systems that target key organs via the oral route, as 

oral delivery advances normally address gastrointestinal drug dissolution, permeation 

and stability. Here we introduce a nanomedicine, in which nanoparticles, while also 

protecting the drug from gastric degradation, are taken up by the gastrointestinal 

epithelia and transported to the lung, liver and spleen, thus selectively enhancing drug 

bioavailability in these target organs and diminishing kidney exposure (relevant to 

nephrotoxic drugs).  Our work demonstrates, for the first time, that oral particle uptake 

and translocation to specific organs may be used to achieve a beneficial therapeutic 

response.  We have illustrated this using amphotericin B, a nephrotoxic drug 

encapsulated within N-palmitoyl-N-methyl-N,N-dimethyl-N,N,N-trimethyl,6-O-

glycolchitosan (GCPQ) nanoparticles and have evidenced our approach in three separate 

disease states (visceral leishmaniasis, candidiasis and aspergillosis) using industry 

standard models of the disease in small animals.  The oral bioavailability of AmB-

GCPQ nanoparticles is 24%. In all disease models, AmB-GCPQ nanoparticles show 

comparable efficacy to parenteral liposomal AmB (Ambisome®). Our work thus paves 

the way for others to use nanoparticles to achieve a specific targeted delivery of drug to 

key organs via the oral route. This is especially important for drugs with a narrow 

therapeutic index. 
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1. Introduction 

The oral administration of medicines is a preferred route of administration although a 

significant proportion of drugs are not orally bioavailable due to their physical 

properties, an issue which contributes to 40% of drug development failures 
1
. An 

industry, such as the pharmaceutical industry, which experiences 90% of clinical stage 

failures 
2
 and thus has to spend upwards of US$ 1 billion to develop a single new 

chemical entity medicine, requires new technologies that will enable medicine 

administration via the preferred route, regardless of the chemical features of any 

promising compounds. Oral drug delivery advances, to date, have focused on 

gastrointestinal drug dissolution 
3
, gastrointestinal drug permeability 

4
 and 

gastrointestinal compound stability 
5
.There are no technologies which have as their goal 

specific organ targeting via the oral route.  Our central hypothesis is that nanoparticles 

which target specific organs via the oral route will confer oral activity on drugs which 

are not otherwise active through this route. Targeting particular organs of pathology and 

avoiding sites of toxicity is the goal of drug delivery. Here we present a nanoparticle 

system that allows oral targeting to the organs of pathology, i.e. the lung, liver and 

spleen, via the oral route but avoids delivery to the organs of toxicity, the kidneys.  Such 

a system will be of particular relevance to nephrotoxic drugs. The utility of the system 

is illustrated via the use of amphotericin B (AmB), one of the most effective antifungal 

drugs used for the treatment of life-threatening systemic fungal infections such as 

candidiasis or aspergillosis and a drug that is also indicated for the treatment of visceral 

leishmaniasis 
6, 7

; the latter due to its very high cure rate and near absence of resistance.  

Intravenous administration of AmB marketed formulations (Fungizone
®
, Ambisome

®
, 

Abelcet
® 

and Amphocil
®

) results in high drug levels in the target organs, i.e. the liver, 

spleen and lungs but also results in drug accumulation in the kidney, leading to toxicity, 



as the drug is nephrotoxic. Both nephrotoxicity and infusion-related side effects, such as 

infections, thrombophlebitis, fever, chills, vomiting, headaches and haemolysis limit the 

usefulness of parenteral AmB formulations. Furthermore, the requirement for 

hospitalisation during treatment, hampers access to parenteral AmB, especially in low 

resource environments such as developing countries 
7, 8

. To date, no oral AmB 

formulations have been marketed because of AmB’s poor gastrointestinal solubility and 

permeability 
9, 10

. Therefore, developing an oral AmB formulation is a viable means of 

improving patient access to treatment worldwide.   

N-palmitoyl-N-monomethyl-N,N-dimethyl-N,N,N-trimethyl-6-O-glycolchitosan 

(GCPQ) is a self-assembling nanoparticle forming polymer that is taken up by 

enterocytes and enables the bioavailability of hydrophobic drugs and peptides
11-14

.  Our 

oral drug organ targeting hypothesis will be tested by encapsulating AmB in GCPQ 

nanoparticles and studying drug and particle biodistribution and drug pharmacological 

efficacy in comparison to control nanoparticle systems: i.e., AmB liposomes 

(Ambisome
®
) or AmB deoxycholate micelles (AMBd). 

 

 

 

 

 

 

 



2. Experimental section 

2.1. Polymer synthesis and characterization 

GCPQ and deuterated GCPQ were synthesized and characterised as previously 

described
11-13, 15, 16

. Nuclear Magnetic Resonance (
1
H NMR) experiments were 

performed to determine the degree of substitution of the polymer. The level of 

palmitoylation was calculated as the ratio between palmitoyl methyl protons (δ= 1.30-

1.40) and sugar methine/methylene protons (δ= 3.5-4.5). The level of quaternization 

was calculated based on the ratio of quaternary ammonium methyl protons (δ= 3.4) to 

sugar methine/methylene protons (δ= 3.5-4.5). The Hydrophobicity Index (HI) was 

calculated as the ratio between palmitoylation (mole %) and quaternary ammonium 

groups (mole%). Gel Permeation Chromatography- Multiangle Laser Light Scattering, 

Fourier-Transformed Infrared spectroscopy (FTIR), Transmission Electron Microscopy 

(TEM), Photon Correlation Spectroscopy (PCS), Spontaneous Raman Scattering 

Spectroscopy and Multimodal Multiphoton Microscopy were used in the 

characterization and imaging of the polymer. See Supplementary Information for further 

details. 

2.2. Preparation, characterization, dissolution and stability studies of AmB-

GCPQ nanoparticles 

Polyelectrolyte complex formation. AmB was solubilised through the formation of 

carboxylate salts at the concentration of 4 mg mL
-1

 in sodium hydroxide (0.02 N) at pH 

12. GCPQ (20 mg mL
-1

) was added to the solution. Polyelectrolyte complexes were 

formed between the carboxylic groups of the AmB and the positively charged 

quaternary ammonium groups of the GCPQ.  The final pH of the dispersion was 



reduced to pH = 5. AmB-GCPQ nanoparticles were centrifuged (13000 rpm, 30 min, 

Microcentaur, MSE, London, U.K.) to remove any aggregated polymer or undissolved 

drug and the supernatant was collected and characterised by PCS, FTIR and TEM. AmB 

aggregation state was assessed by UV. 

Isocratic HPLC quantification of AmB. A validated analytical method utilising an 

Agilent 1200 series HPLC was used 
17

. See Supplementary Information for method 

details. 
 

Flow-through cell dissolution study (USP 4). A flow-through cell dissolution 

apparatus in an open-loop configuration and a cell of an internal diameter of 22.6 mm 

were used.  Please see Supplementary Information Figure S1 for a schematic 

representation of the equipment used. The bottom cone of the cell was filled with one 5 

mm diameter bead positioned at the apex, followed by 7 g of 1 mm diameter glass beads 

in order to generate a laminar flow. A NPcapsTM nº2 capsule (gelatin-like performance 

capsules made of Pullulan) filled with lyophilised formulation [either AmB-GCPQ or 

AmB deoxycholate (AMBd)] containing 5 mg of AmB was placed on the top of the 

small beads. A #40 mesh screen, a glass microfiber filter (Whatman
®

 GF/D, 2.7 μm) 

and a 0.45 μm HA (mixed cellulose esters) hydrophilic filter (Millipore
®
) were 

positioned at the inner top of the cell to retain undissolved material. The dissolution 

medium was circulated by pumping it through the cell at a flow rate of 6 ml min
-1

. 

Three dissolution media prepared as described in the US Pharmacopeia 
18

 were used 

during the experiment: simulated gastric fluid without enzymes (pH = 1.2) from 0 to15 

min, acetate buffer (pH = 4.5) from 15 to 30 min and simulated intestinal fluid without 

enzymes (pH = 6.8) from 30 to 240 min. The temperature was maintained at 37 ± 0.5°C 

during testing. Samples were collected from the flow-through cell in fractions and 

scanned between 300 – 450 nm (Shimadzu UV-1700 spectrophotometer, Shimadzu, 



Kyoto, Japan). Calibration curves were prepared using each of the dissolution media. 

The sum of the absorbance values at 406 and 328 nm (corresponding to the λmax of the 

monomeric and dimeric AmB form respectively) was used to calculate the percentage of 

drug dissolved at each time point. 

Long term stability studies. Stability studies were performed according to the 

International Conference on Harmonisation (ICH) guidelines Q1A (R2) [Stability 

testing of new drug substances and products] at 5°C ± 3°C for 12 months. NPcapsTM nº2 

capsules were filled with 5 mg of lyophilised AmB-GCPQ formulation. Filled capsules 

were packaged in a blister made of poly(vinyl chloride) (PVC) with aluminium foil. At 

various time intervals, the contents of each capsule were dispersed in deionised water 

(at 1 mg mL
-1

) and drug content and particle size were recorded (please see 

Supplementary Information for method details). 

2.3. Pharmacokinetic studies in murine model 

All experiments were performed under a UK Home Office Animal License. 

Single dose oral administration of AmB formulations. CD-1 mice were randomly 

split into groups (n= 4), fasted overnight and then administered AmB formulations by 

oral gavage.  Three different formulations of AmB were administered at an AmB dose 

of 5 mg kg
-1

 at the concentration of 1 mg mL
-1

: (i) AmB-GCPQ (1: 5 g g
-1

), (ii) AMBd 

(AmB, sodium deoxycholate, 1: 0.82 g g
-1

, please see Supplementary Information for 

the preparation method) and (iii) AmB in 5% dextrose. Mice were sacrificed at different 

time points (0.5, 2, 4, 8, and 24 h) and blood and other organs (liver, spleen, brain, 

lungs, kidneys, bladder and gall bladder) were harvested. Plasma was separated by 

centrifugation (4500 rpm, 15 min, 4 °C, Hermle Z323K centrifuge, VWR, Poole, U.K.) 

and all tissues were stored at – 20 °C until analyses could be performed on them. 



Multiple dose oral administration of AmB-GCPQ formulation. CD-1 mice were 

randomly divided into two groups (n = 3), fasted overnight and administered AmB by 

oral gavage.  Oral gavages of AmB-GCPQ (1: 5 g g
-1

) were administered at an AmB 

dose of 5 mg kg
-1

 and a concentration of 1 mg mL
-1

 for 5 days either twice daily (Group 

A) or once a day (Group B). Mice were sacrificed either 12 h (Group A) or 24 h (Group 

B) following the last administration of AmB-GCPQ. Blood and tissues (brain, liver, 

spleen, lungs, kidneys, bone marrow, bladder and gall bladder) were collected and 

stored as described above until samples could be analysed. 

Intravenous (i.v.) administration of AmB-GCPQ formulation. Groups (n = 3) of 

male BALB/c mice were intravenously administered a freshly filtered (0.2 µm) AmB-

GCPQ formulation (1: 5 g g
-1

) at an AmB dose of 1 mg kg
-1

. The formulation was 

previously diluted to 0.25 mg mL
-1

 with a solution of (1: 1) of sodium chloride (0.9% 

w/v) and dextrose (5% w/v). At various time intervals, animals were sacrificed (5 min, 

30 min, 2 h, 4 h, 8 h, and 24 h) and blood was sampled. Plasma was separated and 

stored as described above.  

AmB extraction. Plasma samples (100 μL) were spiked with the internal standard 

meloxicam (Fagrón SL., Madrid, Spain, 200 μg mL
-1

, 10 μL) to a final concentration of 

20 μg mL
-1

. Extraction was carried out with methanol (300 μL). After vortexing, the 

mixture was centrifuged (10000 rpm, 10 min, Microcentaur, MSE, London, U.K.) and 

the supernatant evaporated to dryness under a stream of nitrogen. The samples were 

reconstituted in methanol (100 μL) and then centrifuged again (9000 rpm, 5 min, 4°C). 

The supernatants were analysed by the isocratic HPLC method previously described. 

Tissue samples (liver, brain, kidneys, spleen, lungs and bone marrow) were added to 

sodium hydroxide solution (0.02 M) at pH 12 at a concentration of 0.5, 0.5, 0.25, 0.1, 

0.1 and 0.1 g mL
-1

 tissue respectively homogenised. These tissue homogenates were 



spiked with meloxicam (10 μg mL
-1

, 400 μL) as described above. Two extractions of 

the aqueous tissue homogenate were carried out with methanol (2 mL x 2). After every 

extraction, the mixture was vortexed and then centrifuged (9000 rpm, 20 min, 4 °C). 

The supernatant (2 mL x 2) was collected and then evaporated to dryness under a stream 

of nitrogen. The samples were reconstituted with methanol, mobile phase (1: 1, 200 µL) 

consisting of acetonitrile, acetic acid, water (52: 4.3: 43.7, v/v/v)). After reconstitution, 

samples were centrifuged (13000 rpm, 5 min) and the supernatants analysed using a 

gradient HPLC method.  

Urine was obtained after centrifuging bladder samples (13000 rpm, 5 min) Urine 

samples (10 µL) were spiked with meloxicam (200 µg mL
-1

, 10 µL) and to this was 

added methanol (80 µL). Similarly, bile samples (the whole gallbladder) were spiked 

with meloxicam (200 µg mL
-1

, 10 µL) and to this was added methanol (100 µL). After 

vortexing, samples were centrifuged (13000 rpm, 10 min) and the supernatants were 

analysed by a gradient HPLC method. 

Gradient HPLC quantification of AmB. An HPLC gradient method utilising an 

Agilent 1200 series HPLC was developed to analyse the tissue samples. The samples 

(40 µL) were chromatographed over a Thermo Hypersil BDS C18 reverse-phase 

column (200 × 4.6 mm, 5 μm) maintained at 40°C, at a flow rate of 1.2 mL min
-1

. The 

mobile phase consisted of 0.02 %w/v trifluoroacetic acid in water (line A) and 

acetonitrile (line B). The gradient method expressed as time (min): line B (%) was the 

following one: 0:10, 5:10, 15:59, 22:66, 28:90, 33:10. AmB and meloxicam were 

detected at a wavelength of 406 nm and their retention times were 16.0 and 16.6 min 

respectively. AmB concentrations were calculated from linear regression calibration 

curves from peak height ratios of AmB/ meloxicam. 



2.4. Oral pharmacokinetic studies in beagles 

All experiments were approved and performed in accordance with local ethics 

committee rules (University Cardenal Herrera-CEU, Valencia, Spain). 

Animals. Healthy beagle dogs were housed according to the standards of the 

Committee of Animal Welfare, fed daily, and allowed free access to water throughout 

the study. Animal groups consisted of four male beagle dogs (weight = 15 - 19 kg) and 

one female beagle dog (weight = 15 kg), all of approximately 4 years of age.  

Single dose oral administration of AmB formulations. Dogs were randomly assigned 

to receive orally either AmB-GCPQ formulation (n=3) or liposomal AmB 

(AmBisome
®
) (n=2) at 4 mg kg

-1
 of body weight. Prior to administration, AmBisome

®
 

was reconstituted with 5% w/v glucose at a final concentration of 4 mg mL
-1

. AmB-

GCPQ was prepared as previously described at a final AmB concentration of 4 mg mL
-

1
. After oral administration, blood sampling was carried out at time zero (predose), 15 

min, 30 min, 60 min, 90 min, 2 h, 4 h, 6 h, 8 h, 24 h and 48 h. Plasma was separated by 

centrifugation and then stored at -20 ºC until analyses could be performed. 

Extraction of AmB. Plasma samples (250 μL) were spiked with meloxicam (250 μg 

mL
-1

, 10 μL) to a final concentration of 10 μg mL
-1

. Two extractions were carried out 

with methanol (750 μL x 2), followed by a third extraction with acetonitrile (750 μL). 

After every extraction, the mixture was vortexed and centrifuged (9000 rpm, 10 min, 

4°C). The supernatants were pooled (750 μL x 3) and, evaporated to dryness in a 

concentrator (Savant, SpeedVac
®
, Holbrook, NY, USA) at 30°C. Samples were 

reconstituted with a methanol, mobile phase solution (1:1, 250 μL).  The mobile phase 

consisted of acetonitrile, acetic acid, water (52: 4.3: 43.7, v/v/v). The reconstituted 



samples were centrifuged (9000 rpm, 5 min, 4°C) and the supernatants were analysed 

by the isocratic HPLC method previously described 
17

.  

2.5. Efficacy study in a systemic murine model of visceral leishmaniasis 

Animals. BALB/c mice (20-25 g) were randomly split into 5 groups (n = 8) and 

allowed food and water ad libitum. All experiments were approved by the Complutense 

University of Madrid Institutional Animal Care and Ethics Committee. 

Infection. The preparation of the parasites and the experimental infection were 

performed as previously described 
19

. Please see Supplementary Information for further 

details. Each animal was infected with 10
7
 promastigotes by intracardiac injection. 

Treatment. All treatments started on day 24 post-infection. Group A received 

intraperitoneal (i.p.) AmBisome
®
 at a single dose of 5 mg kg

-1
. Prior to administration, 

AmBisome
®
 was reconstituted with water for injection to an AmB concentration of 4 

mg mL
-1

 and then further diluted with glucose (5% w/v) to a final concentration of 1 mg 

mL
-1

. Group B received an oral (p.o.) dose of the AmB-GCPQ formulation (AmB, 

GCPQ, 1: 5 g g
-1

) at a dose of 5 mg kg
-1 

daily for five consecutive days. Group C served 

as an untreated control for groups A and B. Group D was treated orally with the same 

formulation as group B (AmB-GCPQ) at a dose of 5 mg kg
-1

 daily for ten consecutive 

days. Group E served as an untreated control for group D. Animals were sacrificed on 

day 31 (groups A, B and C) or day 36 (groups D and E) post- infection. Spleens and 

livers from each animal were aseptically removed and weighed to quantify the parasite 

burdens. Plasma and kidneys were collected to quantify the concentration of AmB. 

Plasma was separated by centrifugation and then both the plasma and kidneys were 

stored at -20 ºC until they could be analysed. 



Tissue burden. The parasite burden was quantified by the limit dilution assay as 

described previously 
20, 21

. Please see Supplementary Information for further details. 

The percentage suppression of parasite replication (PS) was calculated using the 

following modified equation of Manandhar et al.
22

: 

PS = (PC-PT) / PC x 100   (Equation 1); 

where PC is the number of parasites in the control group per tissue weight (g) and PT is 

the number of parasites after treatment per tissue weight (g). 

Pharmacokinetic studies. Plasma and kidney samples were analysed as described 

above for the quantification of AmB in tissues. 

2.6. Efficacy study in a systemic murine model of aspergillosis 

Animals. Four week old OF-1 male mice (weight = 30 g) allowed food and water ad 

libitum were used. Animals were immunosuppressed one day before infection by a 

single i.p. dose of cyclophosphamide (200 mg kg
-1

) and a single intravenous (i.v.) dose 

of fluorouracil (150 mg kg
-1

). All experiments were approved by the Universitat Rovira 

i Virgili Institutional Animal Care and Ethics Committee.  

Infection.  One clinical isolate of Aspergillus fumigatus (FMR 7739) showing an AmB 

minimum inhibitory concentration of 1 µg ml
-1

 (determined by following Clinical and 

Laboratory Standards Institute guidelines) was used. The fungus was grown on potato 

dextrose agar (PDA) for 5 days at 35 ºC until sporulation occurred. The inoculum was 

prepared by flooding the plate surface with saline solution. The fungal suspension was 

filtered twice through sterile gauze to remove hyphae and clumps of agar and adjusted 

to the desired concentration by haemocytometer counting. To verify the viability and 

size of the inocula, 10 fold dilutions were placed in PDA for colony forming units 



(CFU) determination. Animals were challenged i.v. via the lateral tail vein with a 

conidial suspension containing 1x10
4
 CFU in 0.2 ml of saline solution. 

Treatment All treatments were started 24 h post infection and lasted for 10 days. Prior 

to administration, formulations were reconstituted with water for injection to an AmB 

concentration of 4 mg mL
-1

 and then further diluted with glucose (5% w/v) to a final 

concentration of 1 mg mL
-1

. In the first experiment, groups of animals (n = 10) received 

AmBisome
®
 administered i.v. at a dose of 5 mg kg

-1
 day

-1
, AMBd administered i.v. at a 

dose of 0.8 mg kg
-1

 day
-1

, AMBd administered p.o. at 5 mg kg
-1

 day
-1 

or AmB-GCPQ 

administered p.o. at 5 mg kg
-1

 day
-1

. In the second experiment, groups of animals (n = 

15) received AmBisome
®
 administered i.v. at 2.5 mg kg

-1
 day

-1
, AMBd administered 

i.v. at 0.5 mg kg
-1

 day
-1

, AMBd administered p.o. at 2.5 mg kg
-1

 day
-1 

or AmB-GCPQ 

administered p.o. at 2.5 mg kg
-1

 day
-1

. In the third experiment, groups of animals (n = 

15) received AmBisome
®
 administered i.v. at 5 mg kg

-1
 day

-1
, AMBd administered i.v. 

at 0.8 mg kg
-1

 day
-1

, AmB-GCPQ administered p.o. at 7.5 mg kg
-1

 day
-1

 or 15 mg kg
-1

 

day
-1

. One group without treatment was included as a control in all the experiments. 

Tissue burden Eight days post infection, 5 animals from each group were sacrificed. 

Kidneys and lungs were removed, mechanically homogenized in 0.9% saline, diluted 

ten-fold in 0.9% saline and the homogenate placed on PDA plates for CFU g
-1

 

determination.  

2.7. Efficacy study in a systemic murine model of candidiasis 

Animals. Male BALB/c mice were randomly split into 3 groups (n = 5) and allowed 

food and water ad libitum. All experiments were approved by the Complutense 

University of Madrid Institutional Animal Care and Ethics Committee. 



Infection. One clinical isolate of Candida albicans CECT 1394 was used. Cultures 

were grown on Sabouraud dextrose agar for 48 h at 30 °C. A colony was resuspended in 

Yeast Extract Peptone Dextrose (YPD) broth (100 mL) and incubated at 30°C 

overnight. The log-phase Candida suspension was centrifuged (3000 rpm, 10 min, 4°C), 

washed two times with phosphate-buffered saline (PBS) and diluted to a final 

concentration of 20 x 10
6
 CFU mL

-1
. BALB/c mice were inoculated i.v. via the lateral 

tail vein with 1 x 10
6 
CFU in PBS (50 µL).

 

Treatment. Treatment started 24 h following infection and lasted for 9 days. Prior to 

administration, formulations were reconstituted with water for injection to an AmB 

concentration of 4 mg mL
-1

 and then further diluted with glucose (5% w/v) to a final 

concentration of 1 mg mL
-1

.  Groups (n = 5) were treated either with AmB-GCPQ p.o. 

at 5 mg kg
-1

 day
-1

 or Ambisome
®
 i.p. at 3 mg kg

-1
 day

-1
. Another group of mice treated 

p.o. with deionized water: 5% glucose (1: 3) was included as a control.  

Tissue burden. Mice were sacrificed by chloroform inhalation at day 10 post-infection 

and target organs (kidneys, liver, lung, brain and spleen) were removed aseptically, 

weighed, and homogenized in sterile saline (5 ml g
-1

 tissue). The number of CFU was 

determined by a plate dilution method in duplicate using yeast extract dextrose 

chloramphenicol agar and colony counting was performed after 72 h of incubation at 30 

°C. 

Toxicological and pharmacokinetic studies. Blood samples were collected at day 10 

post-infection and serum was separated by centrifugation (3000 rpm, 10 min, 4°C). 

Samples were stored at −20°C for biochemistry analysis including creatinine, urea, 

alkaline phosphatase, aspartate transaminase (AST), alanine transaminase (ALT) and 



bilirubin. Samples from healthy mice were included as controls. For pharmacokinetic 

studies, AmB concentrations in kidney, liver, brain and spleen were determined. 

2.8. Statistical analysis 

Statistical analyses were performed via one-way ANOVA Test using Minitab 15 

(Minitab Ltd, Coventry, UK) followed by Tukey’s test.  Statistical significance was set 

at a p < 0.05.    

  



3. Results 

3.1. AmB-GCPQ interaction 

GCPQ (Mw = 9,955 Da, Mn = 9,135 Da, Mw/Mn = 1.090, dn/dc = 0.1355 ± 0.0028 mL 

g
-1

, 16.9 mole % palmitoylation and 16.5 mole % quaternary ammonium groups, HI = 

1.02) was synthesised and characterised. The FTIR spectrum shows the interaction 

between AmB and GCPQ (Figure 1a) with an electrostatic complex being formed. This 

is evidenced by the fact that the signal from the carboxylate groups of the AmB at 1691 

cm
-1

 (C=O stretch) disappears as does the C-N stretch signal from the GCPQ quaternary 

ammonium group (1246 cm
-1

). The molar ratio of hydrophobic to hydrophilic groups 

(HI) in GCPQ plays a crucial role in its complexation with AmB. Polymers with higher 

palmitoylation (> 25%) or lower quaternization (< 15%) failed to form nanosized 

complexes and resulted in a liquid containing larger (> 1 μm) aggregates.   

In aqueous environments, GCPQ self-assembles to form polymeric micelles with a 

particle size of between 5 – 30 nm in diameter while AmB itself aggregates forming 

insoluble polyhedral crystals (see Supplementary Information Figure S2). The AmB, 

GCPQ interaction resulted in the solubilisation of AmB crystals followed by the 

formation of highly stable nanoparticles characterised by a particle size of 216 and 35 

nm (Figure 1b). The biomodal size is due to an equilibrium being established between 

drug filled particles and empty micelles.  The particles have a core shell structure with 

the ionic units (and hence dark stained areas) forming the particle shells and the 

hydrophobic groups (white stain free areas) forming the particle core (Figure 1 b). The 

polar head of the AmB molecules will be oriented to the aqueous phase and the 

hydrophobic tail to the core of the nanoparticles. The hydrophobic tail of the polymer 

has the same number of carbons as the hydrophobic domain of AmB which should 



enhance the hydrophobic interaction (see Supplementary Information Figure S2). The 

amount of amphotericin B loaded in nanoparticles was 90% as quantified in the 

supernatant obtained after centrifugation. Dimers and monomers of AmB were 

encapsulated in the polymer exhibiting characteristic absorption peaks at  328, 363, 383 

and 407 nm and resulting in a transparent yellow liquid 
7
. 

Lyophilised AmB-GCPQ nanoparticles exhibited good long term stability when stored 

at 5 ± 3 °C (particle size and drug content remained unaltered over one year, See 

Supplementary Information Figure S3) and these particles significantly enhanced AmB 

dissolution in simulated gastrointestinal fluids when compared to AMBd (Figure 1c). 



 

Figure 1. AmB-GCPQ interaction. (a) FTIR spectrum of AmB raw material, GCPQ 

and AmB-GCPQ nanoparticles after freeze drying. Key:  - stretching vibrations; δ – 

bending vibrations. (b) TEM with negative staining of AmB (8 mg mL
-1

)-GCPQ (40 mg 

mL
-1

) nanoparticles in deionized water. (c) Dissolution profile of AmB-GCPQ 

nanoparticles (-□-) versus AMBd (-■-). 

 



3.2. Drug Pharmacokinetics 

Mouse plasma and tissue concentration, time profiles of AmB following a single oral 

administration of AmB-GCPQ, AMBd or AmB in dextrose are shown in Figures 2a - e. 

Formulation characterisation data and pharmacokinetics parameters may be found in 

Supplementary Information Tables S1 and S2.  With all formulations AmB plasma 

concentrations increased slowly and were sustained for 8 h after (Figure 2a).  However 

the drug was largely tissue bound and accumulated in the liver, spleen and lung (Figure 

2b, 2c, 2d). AmB-GCPQ resulted in higher plasma levels when compared to AmB in 

dextrose.  Significantly higher AmB levels were found in the liver when the particulate 

formulations of AmB (AmB – GCPQ and AMBd) were administered compared to AmB 

in dextrose (Figure 2b).  Significantly higher levels of AmB were found in the lungs and 

spleen, after oral administration of AmB-GCPQ compared to the administration of 

AmB in dextrose and AMBd.  Only minor differences were found in AmB kidney 

levels, with respect to the formulation administered (Figure 2e). As AmB is a 

nephrotoxic drug, target organ, kidney ratios are crucial.  Lung, kidney AUC0-24 ratios 

for AmB-GCPQ and AMBd were 1.44 and 0.86 respectively while the corresponding 

spleen, kidney ratios were 1.22 and 0.81 respectively and the corresponding liver, 

kidney ratios were 0.88 and 0.40 respectively.  These data demonstrate that, when 

compared to the deoxycholate micelles, GCPQ nanoparticles delivered relatively more 

drug to the target organs (liver, lung and spleen) than was delivered to the kidney.  This 

finding is further confirmed by lower urine levels of AmB with the oral AmB-GCPQ 

formulation (Supplementary Information Figure S4a).  The AmB in dextrose 

formulation delivered the most drug to the kidneys at the early time points, showing the 

drug in solution is rapidly eliminated by the kidneys; a fact that could contribute to the 

occurrence of nephrotoxicity and would explain the reduced drug levels in the target 



organs with the AmB in dextrose formulation. AmB was also recovered from the gall 

bladder, reaching a maximum concentration at 4 hours following oral administration 

(see Supplementary Information Figure S4b). This is evidence of enterohepatic 

circulation of the drug.  After 4 h, AmB levels in the bile decreased as a result of the 

animals being fed.  The percentage of the AmB dose recovered from tissues (liver, 

spleen, lungs, kidneys) and plasma, 8 h after dosing the AmB-GCPQ formulation was 

2.3%, which is 2-fold higher than when the drug was administered orally in dextrose.  

After the administration of multiple doses of AmB-GCPQ to mice, AmB accumulated 

in the target organs (lungs, liver and spleen) and to a lesser extent in the kidney (Figure 

2f and Supplementary Information Table S2).  AmB-GCPQ also delivered AmB to the 

bone marrow and brain; the former important for the clearance of Leishmania and the 

latter important for the targeting of systemic fungal infections. AmB bile levels, 

following multiple doses, were significantly enhanced when compared to urine levels, 

further confirming a major role for enterohepatic circulation in AmB-GCPQ’s delivery 

mechanism.  

When a single dose of AmB-GCPQ was administered to dogs, again oral absorption 

was sustained for up to 8 h (Figure 2g).  Plasma levels in dogs with oral AmB-GCPQ 

were over two fold higher than plasma levels seen with the oral administration of a 

nanoparticle formulation – AmBisome
®
.  With AmB-GCPQ the plasma half-life (t1/2) 

was 59.2 h in dogs and drug was still detectable in the plasma 48 h after dosing, 

whereas it was not detectable 48 h after dosing with oral AmBisome
®
 in dogs. Both 

formulations were well tolerated and there were no signs of gastrointestinal toxicity 

(vomiting or diarrhoea). 

After i.v. administration of AmB-GCPQ (Figure 2 h), there was a fast decline in the 

AmB plasma level, followed by a slower disappearance of the drug from the plasma 



compartment as it equilibrates with the tissue bound drug.  Similar high AmB tissue 

distributions have been observed by others 
23, 24

. The absolute oral bioavailability of 

AmB-GCPQ was 24.7%. Similar oral bioavailability values have been reported for plain 

GCPQ nanoparticles
16

. The plasma t1/2 of the AmB-GCPQ formulation in mice was 61.3 

h. 

 

 

  

 

 

 

 

 

 

 

 

 

  





Figure 2. Pharmacokinetic studies: oral AmB translocation to major target organs. 

(a-e) Single dose oral administration of AmB formulations at 5 mg kg
-1

 in CD-1 

mice. Key: AmB in dextrose (-■-); AMBd (-▲-); AmB (5 mg kg
-1

)- GCPQ (25 mg kg
-

1
) formulation (-●- ). (a) AmB plasma levels (µg mL

-1
). (b) AmB concentration in liver 

(µg g
-1

).  (c) AmB concentration in spleen (µg g
-1

).  (d) AmB concentration in lungs (µg 

g
-1

).  (e) AmB concentration in kidneys (µg g
-1

). Statistical significant differences: * = p 

< 0.05 AmB-GCPQ versus AmB in dextrose; # = p< 0.05 AmB-GCPQ versus AMBd; + 

= p< 0.05 AmB in dextrose versus AMBd. (f) Multiple dose oral administration of 

AmB-GCPQ. AmB concentration in plasma and tissue distribution in major target 

organs after single and multiple dose administration in CD-1 mice. Key: AmB 

concentration at 24 hours after single oral administration of AmB-GCPQ formulation 

(at 5 mg kg
-1

) (white); AmB concentration at 24 hours following the completion of once 

daily for 5 days oral treatment course of 5 mg kg
-1

 of AmB-GCPQ formulation (grey); 

AmB concentration at 12 hours following the completion of twice-daily for 5 days oral 

treatment course of 5 mg kg
-1

 of AmB-GCPQ (black). AmB levels in bone marrow 

(BM) after single oral administration were not quantified. Statistical significant 

differences: * = p < 0.05 versus oral single dose administration and # = p< 0.05 

mutidose once-daily versus multidose twice-daily administration. (g) AmB oral 

administration in beagles. Key: AmB plasma concentration (mean ±SD) versus time 

profile after a single oral administration of AmBisome
®
 (4 mg kg

-1
) (-♦-) and AmB (4 

mg kg
-1

)- GCPQ (20 mg kg
-1

) nanoparticles (-■-) in beagles.  AmB plasma 

concentration at 48 hours after orally administered AmBisome
®

 was below the 

quantification limit of our method (15 ng mL
-1

). Statistical significant differences: * = p 

< 0.05 AmB-GCPQ versus AmBisome
®
. (h) AmB oral bioavailability. AmB plasma 

concentration (mean ±SD) versus time profile after oral (-●-) and iv (-■-) administration 

of AmB-GCPQ formulation at the dose of 5 and 1 mg kg
-1

 respectively. 

 

3.3. Oral Particle Translocation to Major Organs 

The coherent anti-stokes Raman spectroscopy (CARS) method used, images highly 

concentrated species in a narrow focal area and only reports a signal for a self-

assembled nanoparticle and not for individual polymer molecules as it is only with the 

former that the finite local concentrations are high enough to cross the resolution 

threshold for the technique. Using multimodal imaging techniques, deuterated GCPQ 

nanoparticles were imaged in the liver (Figure 3a), lungs (Figure 3b) and intestine 

(Figures 3c – e). Within the liver, GCPQ nanoparticles were located in the hepatocytes, 

the intercellular spaces between hepatocytes and bile canaliculi (Figure 3a); this is 

indicative of enterohepatic circulation and explains the prolonged oral absorption phase 

(Figure 2a).  The presence of GCPQ particles in the liver (Figure 3a) and lung (Figure 



3b) is explained by the fact that GCPQ particles are absorbed via the enterocytes as they 

were found within the intestinal villi (Figure 3c), from where they accessed the liver via 

the portal vein and systemic circulation and accessed the lung via the systemic 

circulation.  GCPQ nanoparticles are not only taken up by the enterocytes but are also 

taken up by the Peyer’s patches (Figure 3e) where they would have access to the 

systemic circulation via the lymphatic vessels.   GCPQ nanoparticles are mucoadhesive 

12
 and they were found in the Brunner’s glands of the duodenum (Figure 3d); the main 

function of the Brunner’s glands is the secretion of a mucus-rich alkaline secretion into 

the duodenum.   Please see Supplementary Information Figure S5 and Video 1 for 

additional details.    



 

Figure 3. Multimodal multiphoton microscopy: oral AmB translocation to major 

target organs at 4 h after administration. (a) Liver. Three-dimensional multiphoton 

image reconstructions obtained from a liver sample. Two photon fluorescence (red) was 

used to generate contrast from endogenous fluorophores such as NADH, in addition to 

aldehyde-induced fluorescence from Schiff bases formed from the reaction of aldehydes 



reacting with the tissue proteins’ epsilon amino groups. Second harmonic generation 

provided contrast from collagen (blue). Contrast from deuterated particles was obtained 

with epi-detected CARS exciting the C-D resonance at 2100 cm
-1

 (green). The location 

of the deuterated particle signal is denoted by yellow arrows. (b) Lungs. Three-

dimensional reconstructions of multiphoton images obtained from a lung sample. Red 

contrast was obtained from structures rich in C-H bonds, such as lipid droplets and cell 

membranes, using epi-detected CARS with the pump and Stokes beams tuned to excite 

the CH2 resonance (2845 cm
-1

). Green contrast was obtained from deuterated particles 

with epi-detected CARS exciting the C-D resonance at 2100 cm
-1

. (c) Small intestine. 

Three-dimensional reconstructions of multiphoton images obtained from a small 

intestine sample. Two photon fluorescence (red) – exciting contrast from endogenous 

fluorophores such as NADH, in addition to aldehyde-induced fluorescence from Schiff 

bases formed from the reaction of aldehydes reacting with the tissue proteins’ epsilon 

amino groups. Green contrast was obtained from deuterated particles with epi-detected 

CARS exciting the C-D resonance at 2100 cm
-1

. Within the villus cross sections, it is 

possible to see deuterated GCPQ has crossed the enterocyted (ii, iii and iv). Deuterated 

GCPQ signal is also found in association with mucus above the villi’s surface in the 

three-dimensional reconstruction in (i). (d) Brunner’s gland. Three-dimensional 

multiphoton image reconstruction of Brunner’s glands. Red contrast was obtained from 

structures rich in C-H bonds, such as lipid droplets and cell membranes, using epi-

detected CARS with the pump and Stokes beams tuned to excite the CH2 resonance 

(2845 cm
-1

). Green contrast was obtained from deuterated particles with epi-detected 

CARS exciting the C-D resonance at 2100 cm
-1

. Blue contrast arises from SHG of 

collagen within the sample. (e) Peyer’s patch. i) Transmitted light image at low 

magnification, illustrating a Peyer’s patch and surrounding villi. ii – vi) Epi-detected 

CARS image composites (red shows contrast from the CH stretch obtained with the 

pump and Stokes beams tuned to 2855 cm
-1

, green shows contrast from the CD stretch 

obtained with the pump and Stokes beams tuned to 2100 cm
-1

.) ii and iii were taken at 

the surface of the Peyer’s patch, with M-cells and goblet cells marked with ‘M’ and ‘G’ 

respectively on B. iv was taken 14 microns below the surface, in the region outlined 

with a yellow box on iii. The cell outlined with a yellow box in iv is shown in more 

detail in v and vi, in three-dimensional composites of the CARS depth stack, illustrating 

the distribution of dGCPQ within this cell.  

 

3.4. Efficacy in visceral leishmaniasis 

The oral administration of AmB-GCPQ nanoparticles at 5 mg kg
-1

 day
-1 

for 10 days was 

similarly efficacious, in a murine model of visceral leishmaniasis, as a parenteral dose 

of AmBisome
®
 (Figure 4).  No statistical significant differences were observed between 

both therapies in the inhibition of parasite replication in liver (98.9% and 99.8%) and in 

spleen (92.1% and 95.2%) respectively. However, oral administration of AmB-GCPQ 



for only 5 days was not sufficient to reduce parasite replication being less effective than 

parenterally administered AmBisome
®
 (data no shown).   

 

Figure 4. Antileismanial activity of oral AmB-GCPQ nanoparticles in L. infantum-

infected BALB/c mice. All treatments started 24 days post-infection. Groups of 

animals (n = 8) received either AmBisome
®
 i.p. at a single dose of 5 mg kg

-1 
body 

weight or orally AmB-GCPQ formulation at 5 mg kg
-1

 once-daily for 10 consecutive 

days. The parasitic burden was estimated by the limit dilution assay. Key: percentage of 

suppression of parasite replication in liver (grey) and spleen (white). Data are expressed 

as mean ± SD. Statistical significant differences (p < 0.05) were not found between both 

regimens. 

 

AmB plasma levels 7 days after a single i.p. dose of Ambisome
®
 (at 5 mg kg

-1
), 3 days 

after the last oral dose of  AmB-GCPQ 10 day course (at 5 mg kg
-1 

day
-1

 for 10 days) or 

3 days after the last oral dose of AmB-GCPQ 5 day course (at 5 mg kg
-1 

day
-1

 for 5 

days) were: 66.6 ± 22.9 ng mL
-1

, 53.5 ± 15.9 ng mL
-1

 and 43.8 ± 20.9 ng mL
-1 

respectively; whereas the corresponding AmB kidney levels were: 1443.6 ± 662.4 ng g
-

1
, 578.9 ± 156.1 ng g

-1
 and 331.2 ± 101.1 ng g

-1
 respectively and plasma, kidney ratios 



were: 0.046, 0.092 and 0.132 respectively showing increased distribution to the kidney 

with Ambisome
®
.  

3.5. Efficacy in disseminated aspergillosis 

A low oral AmB-GCPQ dose (2.5 mg kg
-1

 day
-1

) did not increase the survival time or 

reduce the fungal burden in a murine model of disseminated aspergillosis (Figure 5a and 

5b), whereas oral AmB-GCPQ was efficacious at higher doses.  No significant 

difference in survival time, when compared to an untreated control group, was found 

between oral AmB-GCPQ (at 5 mg kg
-1

 day
-1

) and i.v. Ambisome
®
 (at 5 mg kg

-1
 day

-1
) 

(Figure 5c).  Intravenous AMBd (at 0.8 mg kg
-1

 day
-1

) did not increase survival time 

compared to the control group (Figure 5c). In contrast to oral AMBd (at 0.8 mg kg
-1

 

day
-1

) oral AmB-GCPQ (at 5 mg kg
-1

 day
-1

) reduced tissue burden with respect to 

controls (1.3 Log10 and 2.75 Log10 in kidney and lung respectively (Figure 5d).  Higher 

oral AmB-GCPQ doses (at 7.5 or 15 mg kg
-1

 day
-1

) were statistically similar to 

Ambisome
®
 i.v. (at 5 mg kg

-1
 day

-1
) (Figure 5e) and showed an even greater reduction 

in fungal load when compared to the lower dose of oral AmB-GCPQ (Figure 5f). No 

differences in efficacy were found between the 7.5 and 15 mg kg
-1

 day
-1 

oral doses of 

AmB-GCPQ (Figures 5e and 5f).  Animals receiving oral AmB-GCPQ gained weight 

over time at all doses, whereas mice treated with oral AMBd suffered significant weight 

loss, presumably caused by the gastrointestinal toxicity of the formulation (see 

Supplementary Information Figure S6). 



 

Figure 5. Efficacy of AmB-GCPQ nanoparticles in a systemic murine model of 

aspergillosis. On the left, survival of OF-1 mice infected intravenously (i.v.) with 1x10
4
 

CFU of A. fumigatus after treatment is shown. On the right side, scattergram of CFU g
-1

 

of tissue (kidney and lungs) is represented showing the median of the group by 

horizontal lines. Drugs were administered i.v. or orally by gavage (p.o.) 24h after 

infection for 10 days in the survival study or for 7 days in tissue burden study. a-b) 

Animals received liposomal AmB (AmBisome
®

) i.v. at 2.5 mg kg
-1

 day
-1

, amphotericin 

B deoxycolate (AMBd) i.v. at 0.5 mg kg
-1

 day
-1

 and p.o. at 2.5 mg kg
-1

 day
-1

 or AmB-

GCPQ nanoparticles  p.o. at 2.5 mg kg
-1

 day
-1

; c-d) Animals received AmBisome
®

 i.v. 

at 5 mg kg
-1

 day
-1

, AMBd i.v. at 0.8 mg kg
-1

 day
-1

 and p.o. at 5 mg kg
-1

 day
-1

 or AmB-

GCPQ p.o. at 5 mg kg
-1

 day
-1

; e-f) Animals received AmBisome
®

 i.v. at 5 mg kg
-1

 day
-1

, 

AMBd i.v. at 0.8 mg kg
-1

 day
-1

 or AmB-GCPQ p.o. at 7.5 and 15 mg kg
-1

 day
-1

. 

 

3.6. Efficacy in systemic candidiasis 

Although AmB levels in tissues (kidney, liver, spleen and brain) after 9 days of 

parenteral Ambisome
®

 (at 3 mg kg
-1

 day
-1

) were significantly higher than those obtained 

after 9 days of oral AmB-GCPQ (at 5 mg kg
-1

 day
-1

) (Figure 6b), no significant 



differences were found in the reduction of fungal burden (Figure 6a and b) between both 

therapies. Oral AmB-GCPQ (at 5 mg kg
-1

 day
-1

) cleared the spleen and liver and 

reduced by 1.4 log10 the fungal load in the brain compared to control animals.  

The infected control group exhibited the highest levels of creatinine and urea as C. 

albicans infection is associated with renal failure
25

 (Figure 6c and d). For example, mice 

with the highest CFU in kidney (mice 1, 2 and 4) exhibited the highest urea and 

creatinine levels. Oral administration of AmB-GCPQ resulted in a reduction of urea 

levels compared to the infected control group but produced a significant increase in 

alkaline phosphatase levels (Figures 6c and h). No significant differences were observed 

among the other biochemical parameters (Figures 6e -g). 





Figure 6. PK/PD and toxicology correlation of AmB-GCPQ nanoparticles in a 

systemic murine model of candidiasis at day 10 post-infection. Treatment started 24 

h after infection and lasted for 9 days. Animals were treated with either liposomal AmB 

(AmBisome
®
) i.p. at 3 mg kg

-1
 day

-1
 or AmB-GCPQ p.o. at 5 mg kg

-1
 day

-1
. One group 

was included as a control. A) Scattergram of CFU g
-1

 of tissue (kidney, spleen, liver and 

brain) is represented showing the median of the group by horizontal lines; b) AmB 

concentration (µg g
-1

) in kidney, liver, spleen and brain. Statistical significant 

differences: * = p < 0.05 AmB-GCPQ versus AmBisome
®
; c) Urea levels (mg dL

-1
); d) 

Creatinine levels (mg dL
-1

); e) Bilirubin levels (mg dL
-1

); statistical significant 

differences: * = p < 0.05 AmBisome
®

 vs infected control group; f) AST (U L
-1

); f) ALT 

(U L
-1

); f) Alkaline phosphatase (U L
-1

); statistical significant differences: * = p < 0.05 

AmB-GCPQ vs all the groups. Key: mouse 1 (-○-); mouse 2 (-∆-); mouse 3 (--); 

mouse 4 (-  -); mouse 5 (-□-); mean (▬). 

 

4. Discussion 

This is the first report in which orally administered nanoparticles (AmB-GCPQ) 

resulted in drug targeting to specific organs such as lung and spleen (Figures 2c, 2d and 

3b).  While both particle formulations (AmB-GCPQ and AMBd), deliver higher levels 

of drug to the liver (Figure 2b and Figure 3a), only the AmB-GCPQ formulation 

delivered drug specifically to the lung and spleen, while sparing of the organ of toxicity 

– the kidney (Figure 2e).  This targeting to key organs (essentially to the lungs, liver and 

spleen) is of benefit to the treatment of a number of infectious diseases such as visceral 

leishmaniasis (Figure 4) and systemic fungal infections (Figures 5 and 6), with a drug 

such as AmB, which is a broad spectrum anti-fungal and low resistance anti-leishmanial 

drug but which is severely nephrotoxic.  One aspect that contributes to the utility of the 

nanoparticles is the exceptional stability of the AmB-GCPQ nanoparticles.  AmB-

GCPQ nanoparticles are stable for one year on storage (Supplementary Information 

Figure S3).  AmB-GCPQ nanoparticles are formed via electrostatic interactions between 

the AmB carboxylate and GCPQ quaternary ammonium groups (Figure 1a) as well as 

via the hydrophobic attractions between the palmitoyl chains of the GCPQ molecule 

and long chain alkene groups of the AmB molecule.  The net result is a formulation of 



exceptional stability, in which nanoparticles may be reconstituted from a dry powder 

(Supplementary Information Figure S3c).    

AmB-GCPQ nanoparticles enhanced the oral absorption of AmB when compared to the 

drug alone or to the reference particulate formulation AMBd. AmB is poorly soluble in 

aqueous media (< 1 mg L
-1

)
7
 and its poor dissolution rate within the gastrointestinal 

tract will limit absorption as will its poor gut permeation, since AmB is a 

Biopharmaceutical Classification System Class IV drug with poor gut permeability as 

well as poor aqueous solubility
26

.  AMBd formulations will provide an increase in 

dissolution rate as AmB is encapsulated within small, high surface area deoxycholate 

micelles, however AmB-GCPQ nanoparticles will not only increase drug dissolution but 

will also be taken up via the gut enterocytes and Peyer’s patches (Figures 3c and e) thus 

solving the gut permeation problems associated with AmB.  GCPQ nanoparticles are 

positively charged and are known to be mucoadhesive
12

, and taken up by the gut 

enterocytes with a bioavailability of 24%
13, 16

 and now we also know that they are taken 

up by the Peyer’s patches (Figure 3e).  Transport from the gut associated lymphoid 

tissue via the lymphatic vessels to the systemic circulation will also increase the oral 

bioavailability of the AmB-GCPQ formulation.        

In comparison to other oral AmB lipid-based formulations that have been reported 
27-29

, 

AmB-GCPQ nanoparticles are able to deliver greater amounts of drug to tissues after 

administering the same oral dose (5 mg kg
-1

 twice daily for 5 days); drug levels are 6.6 - 

7.5 fold higher in liver, 8.6 - 10.5 fold greater in spleen, 5.2 – 6.4 fold higher in lungs 

and 2.5 fold higher in brain when compared to these other AmB lipid-based 

formulations. Furthermore this is the first study that reports an oral AmB relative 

bioavailability of 24.7%.  High levels of AmB are found in the organs of the 

reticuloendothelial system (liver, lung, spleen and bone marrow) after oral absorption of 



AmB-GCPQ (Figures 2 c – f) and this may be the result of macrophage phagocytosis of 

particles within the lymphatic vessels and systemic circulation.  GCPQ nanoparticles on 

intravenous administration are not taken up by the spleen and only very low levels (4% 

of the administered dose at the 5 minute time point)
14

 are found in the liver, whereas via 

the oral route GCPQ nanoparticles distribute to the spleen, liver and lung with 0.25, 2, 

0.2% of a 200 mg kg-1 dose distributing to the spleen liver and lung at the 2h time point 

respectively 
13, 16

.  The AmB coating on the surface of the GCPQ nanoparticles (Figure 

1b) would also contribute to uptake by macrophages as AmB is known to be cleared by 

the macrophages 
7
.   

The treatment of infectious diseases requires sufficient drug levels in key organs and 

although, much lower AmB concentration were recorded in target organs after oral 

administration of AmB-GCPQ nanoparticles compared to after the parenteral 

administration of AmBisome
®
, there were no real differences in the efficacy of oral 

AmB-GCPQ, when compared to i.v. AmBisome
®
 (Figures 4 – 6) with respect to the 

liver, spleen and lung microorganisms.  However the lower levels of AmB found in the 

kidney on the oral administration of AmB-GCPQ did result in a poorer control of 

candidiasis fungal load in the kidney with this formulation (Figure 6a).  This also 

explains the slow recovery of kidney function (creatinine levels, Figure 6d) on oral 

administration of AmB-GCPQ.  While there were unexplained changes to the alkaline 

phosphatase levels after oral administration of AmB-GCPQ there were no significant 

differences in the other biochemical markers when AmB-GCPQ animals was compared 

to healthy controls.   

This is also the first report on the oral absorption of AmB in dogs. Absorption of AmB 

from AmB-GCPQ is superior to that seen with an oral formulation of AmBisome
®
 

(Figure 2g).  AmB-GCPQ is thus superior to other nanoparticle formulations such as 



AMBd and AmBisome
®
 in rodents and dogs respectively. Interspecies differences were 

noted in the oral AmB-GCPQ plasma level time curve data.  The Cmax was lower in 

dogs when compared to mice (Figures 2a and 2g) and this could stem from differences 

in stomach pH (fasted dog stomach pH = 2.03 ± 0.59 
30

 and fasted mouse stomach pH = 

4.04 ± 0.2) 
31

 which would lead to a faster drug degradation in the dog or differences in 

bile flow (dog bile flow = 12 mL day
-1

 kg
-1

 
32

 and mouse bile flow = 100 mL day
-1

 kg
-1

 

32
) which would lead to reduced hydrophobic drug absorption.   Plasma levels dropped 

more steeply in the mouse compared to the dog during the elimination phase (8 – 24 h 

after dosing), with a drop of 38.8% in mice and 6.7% in dogs, and this could be due to 

the faster glomerular filtration rate in dogs (glomerular filtration rate = 14 and 6 mL 

min
-1

 kg
-1

 in mice and dogs respectively 
32

).   

So far, marketed AmB formulations have to be parenterally administered although in 

developing countries, there are neither enough technical personal nor clinical facilities 

to allow safe parenteral i.v. administration. In such countries oral drug administration 

should clearly be the first choice format.  In this work, we have demonstrated that AmB 

accumulation in specific target organs may be achieved by the oral administration by 

AmB-GCPQ nanoparticles, resulting in high enough concentrations to elicit AmB’s 

pharmacological effect, while sparing the site of drug toxicity – the  kidney. 

 

5. Conclusions 

In summary, our work demonstrates, for the first time, that oral particle uptake and 

translocation to specific organs may be used to achieve a beneficial therapeutic 

response. We have designed an orally active nanomedicine based on an amphiphilic 

nanoparticle forming polymer (GCPQ), which achieves a relative AmB oral 

bioavailability of 24.7%.  AmB-GCPQ nanoparticles target AmB to particular organs of 



pathology and spare the site of toxicity – the kidney, resulting in effective treatments in 

preclinical disease models.  This is the first report of a therapeutic advantage stemming 

directly from particle gut uptake and translocation to key organs of pathology. AmB 

liver, spleen and lung levels after oral AmB-GCPQ administration were lower than 

those obtained with parenteral formulations, however oral AmB-GCPQ was as effective 

as the parenteral AmBisome
®
 formulation in the treatment of visceral leishmaniasis, 

aspergillosis and systemic candidiasis animal models of these diseases.  
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Figure captions 

Figure 1. AmB-GCPQ interaction. (a) FTIR spectrum of AmB raw material, GCPQ 

and AmB-GCPQ nanoparticles after freeze drying. Key:  - stretching vibrations; δ – 

bending vibrations. (b) TEM with negative staining of AmB (8 mg mL
-1

)-GCPQ (40 mg 

mL
-1

) nanoparticles in deionized water. (c) Dissolution profile of AmB-GCPQ 

nanoparticles (-□-) versus AMBd (-■-). 

Figure 2. Pharmacokinetic studies: oral AmB translocation to major target organs. 

(a-e) Single dose oral administration of AmB formulations at 5 mg kg
-1

 in CD-1 

mice. Key: AmB in dextrose (-■-); AMBd (-▲-); AmB (5 mg kg
-1

)- GCPQ (25 mg kg
-

1
) formulation (-●- ). (a) AmB plasma levels (µg mL

-1
). (b) AmB concentration in liver 

(µg g
-1

).  (c) AmB concentration in spleen (µg g
-1

).  (d) AmB concentration in lungs (µg 

g
-1

).  (e) AmB concentration in kidneys (µg g
-1

). Statistical significant differences: * = p 

< 0.05 AmB-GCPQ versus AmB in dextrose; # = p< 0.05 AmB-GCPQ versus AMBd; + 

= p< 0.05 AmB in dextrose versus AMBd. (f) Multiple dose oral administration of 

AmB-GCPQ. AmB concentration in plasma and tissue distribution in major target 

organs after single and multiple dose administration in CD-1 mice. Key: AmB 

concentration at 24 hours after single oral administration of AmB-GCPQ formulation 

(at 5 mg kg
-1

) (white); AmB concentration at 24 hours following the completion of once 

daily for 5 days oral treatment course of 5 mg kg
-1

 of AmB-GCPQ formulation (grey); 

AmB concentration at 12 hours following the completion of twice-daily for 5 days oral 

treatment course of 5 mg kg
-1

 of AmB-GCPQ (black). AmB levels in bone marrow 

(BM) after single oral administration were not quantified. Statistical significant 



differences: * = p < 0.05 versus oral single dose administration and # = p< 0.05 

mutidose once-daily versus multidose twice-daily administration. (g) AmB oral 

administration in beagles. Key: AmB plasma concentration (mean ±SD) versus time 

profile after a single oral administration of AmBisome
®
 (4 mg kg

-1
) (-♦-) and AmB (4 

mg kg
-1

)- GCPQ (20 mg kg
-1

) nanoparticles (-■-) in beagles.  AmB plasma 

concentration at 48 hours after orally administered AmBisome
®

 was below the 

quantification limit of our method (15 ng mL
-1

). Statistical significant differences: * = p 

< 0.05 AmB-GCPQ versus AmBisome
®
. (h) AmB oral bioavailability. AmB plasma 

concentration (mean ±SD) versus time profile after oral (-●-) and iv (-■-) administration 

of AmB-GCPQ formulation at the dose of 5 and 1 mg kg
-1

 respectively. 

Figure 3. Multimodal multiphoton microscopy: oral AmB translocation to major 

target organs. (a) Liver. Three-dimensional multiphoton image reconstructions 

obtained from a liver sample. Two photon fluorescence (red) was used to generate 

contrast from endogenous fluorophores such as NADH, in addition to aldehyde-induced 

fluorescence from Schiff bases formed from the reaction of aldehydes reacting with the 

tissue proteins’ epsilon amino groups. Second harmonic generation provided contrast 

from collagen (blue). Contrast from deuterated particles was obtained with epi-detected 

CARS exciting the C-D resonance at 2100 cm
-1

 (green). The location of the deuterated 

particle signal is denoted by yellow arrows. (b) Lungs. Three-dimensional 

reconstructions of multiphoton images obtained from a lung sample. Red contrast was 

obtained from structures rich in C-H bonds, such as lipid droplets and cell membranes, 

using epi-detected CARS with the pump and Stokes beams tuned to excite the CH2 

resonance (2845 cm
-1

). Green contrast was obtained from deuterated particles with epi-

detected CARS exciting the C-D resonance at 2100 cm
-1

. (c) Small intestine. Three-

dimensional reconstructions of multiphoton images obtained from a small intestine 



sample. Two photon fluorescence (red) – exciting contrast from endogenous 

fluorophores such as NADH, in addition to aldehyde-induced fluorescence from Schiff 

bases formed from the reaction of aldehydes reacting with the tissue proteins’ epsilon 

amino groups. Green contrast was obtained from deuterated particles with epi-detected 

CARS exciting the C-D resonance at 2100 cm
-1

. Within the villus cross sections, it is 

possible to see deuterated GCPQ has crossed the enterocyted (ii, iii and iv). Deuterated 

GCPQ signal is also found in association with mucus above the villi’s surface in the 

three-dimensional reconstruction in (i). (d) Brunner’s gland. Three-dimensional 

multiphoton image reconstruction of Brunner’s glands. Red contrast was obtained from 

structures rich in C-H bonds, such as lipid droplets and cell membranes, using epi-

detected CARS with the pump and Stokes beams tuned to excite the CH2 resonance 

(2845 cm
-1

). Green contrast was obtained from deuterated particles with epi-detected 

CARS exciting the C-D resonance at 2100 cm
-1

. Blue contrast arises from SHG of 

collagen within the sample. (e) Peyer’s patch. i) Transmitted light image at low 

magnification, illustrating a Peyer’s patch and surrounding villi. ii – vi) Epi-detected 

CARS image composites (red shows contrast from the CH stretch obtained with the 

pump and Stokes beams tuned to 2855 cm
-1

, green shows contrast from the CD stretch 

obtained with the pump and Stokes beams tuned to 2100 cm
-1

.) ii and iii were taken at 

the surface of the Peyer’s patch, with M-cells and goblet cells marked with ‘M’ and ‘G’ 

respectively on B. iv was taken 14 microns below the surface, in the region outlined 

with a yellow box on iii. The cell outlined with a yellow box in iv is shown in more 

detail in v and vi, in three-dimensional composites of the CARS depth stack, illustrating 

the distribution of dGCPQ within this cell.  

Figure 4. Antileismanial activity of oral AmB-GCPQ nanoparticles in L. infantum-

infected BALB/c mice. All treatments started 24 days post-infection. Groups of 



animals (n = 8) received either AmBisome
®
 i.p. at a single dose of 5 mg kg

-1 
body 

weight or orally AmB-GCPQ formulation at 5 mg kg
-1

 once-daily for 10 consecutive 

days. The parasitic burden was estimated by the limit dilution assay. Key: percentage of 

suppression of parasite replication in liver (grey) and spleen (white). Data are expressed 

as mean ± SD. Statistical significant differences (p < 0.05) were not found between both 

regimens. 

Figure 5. Efficacy of AmB-GCPQ nanoparticles in a systemic murine model of 

aspergillosis. On the left, survival of OF-1 mice infected intravenously (i.v.) with 1x10
4
 

CFU of A. fumigatus after treatment is shown. On the right side, scattergram of CFU g
-1

 

of tissue (kidney and lungs) is represented showing the median of the group by 

horizontal lines. Drugs were administered i.v. or orally by gavage (p.o.) 24h after 

infection for 10 days in the survival study or for 7 days in tissue burden study. a-b) 

Animals received liposomal AmB (AmBisome
®

) i.v. at 2.5 mg kg
-1

 day
-1

, amphotericin 

B deoxycolate (AMBd) i.v. at 0.5 mg kg
-1

 day
-1

 and p.o. at 2.5 mg kg
-1

 day
-1

 or AmB-

GCPQ nanoparticles  p.o. at 2.5 mg kg
-1

 day
-1

; c-d) Animals received AmBisome
®

 i.v. 

at 5 mg kg
-1

 day
-1

, AMBd i.v. at 0.8 mg kg
-1

 day
-1

 and p.o. at 5 mg kg
-1

 day
-1

 or AmB-

GCPQ p.o. at 5 mg kg
-1

 day
-1

; e-f) Animals received AmBisome
®

 i.v. at 5 mg kg
-1

 day
-1

, 

AMBd i.v. at 0.8 mg kg
-1

 day
-1

 or AmB-GCPQ p.o. at 7.5 and 15 mg kg
-1

 day
-1

. 

Figure 6. PK/PD and toxicology correlation of AmB-GCPQ nanoparticles in a 

systemic murine model of candidiasis at day 10 post-infection. Treatment started 24 

h after infection and lasted for 9 days. Animals were treated with either liposomal AmB 

(AmBisome
®
) i.p. at 3 mg kg

-1
 day

-1
 or AmB-GCPQ p.o. at 5 mg kg

-1
 day

-1
. One group 

was included as a control. A) Scattergram of CFU g
-1

 of tissue (kidney, spleen, liver and 

brain) is represented showing the median of the group by horizontal lines; b) AmB 

concentration (µg g
-1

) in kidney, liver, spleen and brain. Statistical significant 



differences: * = p < 0.05 AmB-GCPQ versus AmBisome
®
; c) Urea levels (mg dL

-1
); d) 

Creatinine levels (mg dL
-1

); e) Bilirubin levels (mg dL
-1

); statistical significant 

differences: * = p < 0.05 AmBisome
®

 vs infected control group; f) AST (U L
-1

); f) ALT 

(U L
-1

); f) Alkaline phosphatase (U L
-1

); statistical significant differences: * = p < 0.05 

AmB-GCPQ vs all the groups. Key: mouse 1 (-○-); mouse 2 (-∆-); mouse 3 (--); 

mouse 4 (-  -); mouse 5 (-□-); mean (▬). 
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