42 research outputs found

    An emissions-socioeconomic inventory of Chinese cities

    Get PDF
    As the centre of human activity and being under the threat of climate change, cities are considered to be major components in the implementation of climate change mitigation and CO2 emission reduction strategies. Inventories of cities’ emissions serve as the foundation for the analysis of emissions characteristics and policymaking. China is the world’s top energy consumer and CO2 emitter, and it is facing great potential harm from climate change. Consequently, China is taking increasing responsibility in the fight against global climate change. Many energy/emissions control policies have been implemented in China, most of which are designed at the national level. However, cities are at different stages of industrialization and have distinct development pathways; they need specific control policies designed based on their current emissions characteristics. This study is the first to construct emissions inventories for 182 Chinese cities. The inventories are constructed using 17 fossil fuels and 47 socioeconomic sectors. These city-level emissions inventories have a scope and format consistent with China’s national/provincial inventories. Some socioeconomic data of the cities, such as GDP, population, industrial structures, are included in the datasets as well. The dataset provides transparent, accurate, complete, comparable, and verifiable data support for further city-level emissions studies and low-carbon/sustainable development policy design. The dataset also offers insights for other countries by providing an emissions accounting method with limited data

    Chemokine receptor CX3CR1 contributes to macrophage survival in tumor metastasis

    Full text link
    Chinese Ministry of Science and Technology [2009CB522205, 2012CB945104]; National Science Foundation of China [81170120, 31090363]; Beijing Nova Program [Z121107002512041]Background: Macrophages, the key component of the tumor microenvironment, are differentiated mononuclear phagocyte lineage cells that are characterized by specific phenotypic characteristics that have been implicated in tumor growth, angiogenesis, and invasion. CX3CR1, the chemoattractant cytokine CX3CL1 receptor, plays an important role in modulating inflammatory responses, including monocyte homeostasis and macrophage phenotype and function. However, the role of CX3CR1 in the regulation of the tumor inflammatory microenvironment is not fully understood. Methods: Using in vivo hepatic metastasis model, human colon carcinoma specimens, immunohistochemical staining, TUNEL staining, flow cytometry analysis, Western blotting assay and co-culture in three-dimensional peptide gel, we determined the effects of CX3CR1 on angiogenic macrophage survival and tumor metastasis. Results: In this study, we found that CX3CR1 was expressed in human colon carcinomas in a histologic grade-and stage-dependent manner, and CX3CR1 upregulation in TAMs was correlated with poor prognosis. Furthermore, we showed that in a microenvironment lacking CX3CR1, the liver metastasis of colon cancer cells was significantly inhibited. The underlying mechanism is associated with decrease accumulation of angiogenic macrophages that can be partly attributed to increased apoptosis in the tumor microenvironment, thus leading to impaired tumor angiogenesis in the liver and suppressed tumor metastasis. Conclusions: Our results suggest a role of CX3CR1 in angiogenic macrophage survival in the tumor microenvironment contributing to tumor metastasis

    Methodology and applications of city level CO2 emission accounts in China

    Get PDF
    China is the world's largest energy consumer and CO2 emitter. Cities contribute 85% of the total CO2 emissions in China and thus are considered as the key areas for implementing policies designed for climate change adaption and CO2 emission mitigation. However, the emission inventory construction of Chinese cities has not been well researched, mainly owing to the lack of systematic statistics and poor data quality. Focusing on this research gap, we developed a set of methods for constructing CO2 emissions inventories for Chinese cities based on energy balance table. The newly constructed emission inventory is compiled in terms of the definition provided by the IPCC territorial emission accounting approach and covers 47 socioeconomic sectors, 17 fossil fuels and 9 primary industry products, which is corresponding with the national and provincial inventory. In the study, we applied the methods to compile CO2 emissions inventories for 24 common Chinese cities and examined uncertainties of the inventories. Understanding the emissions sources in Chinese cities is the basis for many climate policy and goal research in the future

    New provincial CO2 emission inventories in China based on apparent energy consumption data and updated emission factors

    Get PDF
    This study employs “apparent energy consumption” approach and updated emissions factors to re-calculate Chinese provincial CO2 emissions during 2000–2012 to reduce the uncertainty in Chinese CO2 emission estimates for the first time. The study presents the changing emission-socioeconomic features of each provinces as well. The results indicate that Chinese provincial aggregated CO2 emissions calculated by the apparent energy consumption and updated emissions factors are coincident with the national emissions estimated by the same approach, which are 12.69% smaller than the one calculated by the traditional approach and IPCC default emission factors. The provincial aggregated CO2 emissions increased from 3160 million tonnes in 2000 to 8583 million tonnes in 2012. During the period, Shandong province contributed most to national emissions accumulatively (with an average percentage of 10.35%), followed by Liaoning (6.69%), Hebei (6.69%) and Shanxi provinces (6.25%). Most of the CO2 emissions were from raw coal, which is primarily burned in the thermal power sector. The analyses of per capita emissions and emission intensity in 2012 indicates that provinces located in the northwest and north had higher per capita CO2 emissions and emission intensities than the central and southeast coastal regions. Understanding the emissions and emission-socioeconomic characteristics of different provinces is critical for developing mitigation strategies

    Finishing the euchromatic sequence of the human genome

    Get PDF
    The sequence of the human genome encodes the genetic instructions for human physiology, as well as rich information about human evolution. In 2001, the International Human Genome Sequencing Consortium reported a draft sequence of the euchromatic portion of the human genome. Since then, the international collaboration has worked to convert this draft into a genome sequence with high accuracy and nearly complete coverage. Here, we report the result of this finishing process. The current genome sequence (Build 35) contains 2.85 billion nucleotides interrupted by only 341 gaps. It covers ∼99% of the euchromatic genome and is accurate to an error rate of ∼1 event per 100,000 bases. Many of the remaining euchromatic gaps are associated with segmental duplications and will require focused work with new methods. The near-complete sequence, the first for a vertebrate, greatly improves the precision of biological analyses of the human genome including studies of gene number, birth and death. Notably, the human enome seems to encode only 20,000-25,000 protein-coding genes. The genome sequence reported here should serve as a firm foundation for biomedical research in the decades ahead

    FINITE ELEMENT ANALYSIS OF CYCLIC PROPERTY AND FATIGUE LIFE PREDICTION FOR 316L STAINLESS STEEL

    No full text
    Low cycle fatigue tests were carried for 316 L stainless steel and the material cyclic property was simulated by finite element method. The test results show that the significant cyclic additional hardening can be observed in different strain ranges and it is more evident with increase in strain range. The mixing model combined with the nonlinear kinematic hardening and the isotropic hardening is used to describe the elastic and plastic behavior. The simulation results of stress-strain agree well with the test results for the second cycle in different strain ranges. The error of the maximum stress for first 20 cycles between the simulation results and test results depends on the strain range and the maximum error is 3. 20%. The energy approach is used to predict the fatigue life based on the test results and simulation results and the prediction results are in a factor-2 scatter band
    corecore