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Abstract 

As the centre of human activity and being under the threat of climate change, cities are 

considered to be major components in the implementation of climate change mitigation and 

CO2 emission reduction strategies. Inventories of cities’ emissions serve as the foundation for 

the analysis of emissions characteristics and policymaking. China is the world’s top energy 

consumer and CO2 emitter, and it is facing great potential harm from climate change. 

Consequently, China is taking increasing responsibility in the fight against global climate 

change. Many energy/emissions control policies have been implemented in China, most of 

which are designed at the national level. However, cities are at different stages of 

industrialization and have distinct development pathways; they need specific control policies 

designed based on their current emissions characteristics. This study is the first to construct 

emissions inventories for 182 Chinese cities. The inventories are constructed using 17 fossil 

fuels and 47 socioeconomic sectors. These city-level emissions inventories have a scope and 

format consistent with China’s national/provincial inventories. Some socioeconomic data of 

the cities, such as GDP, population, industrial structures, are included in the datasets as well. 

The dataset provides transparent, accurate, complete, comparable, and verifiable data 

support for further city-level emissions studies and low-carbon/sustainable development 

policy design. The dataset also offers insights for other countries by providing an emissions 

accounting method with limited data. 

Background & Summary 

Cities are considered to be major components in the implementation of climate change 

mitigation and CO2 emission reduction strategies 1. Although a mention of “city” is lacking in 

the Paris Agreement or the Sustainable Development Goals, as all submissions focused on the 

national level, climate change actions should be taken at the city level 2. 

Cities are the basic units for human activity3 and the main consumers of energy and emitters 

of CO2 throughout the world 4,5. The CO2 emissions from energy use in cities will grow by 1.8% 

per year between 2006 and 2030, with the share of global CO2 emissions rising from 71% to 

76% 6. In China, urban energy use accounts for 85% of total emissions, which is higher than its 
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share in the USA (80%) or Europe (69%) 7,8. The high energy demand and high CO2 emissions 

of cities not only increase climate change concerns and environmental pressure but also 

increase residents’ health problems through air pollution 9. Both coastal and interior cities are 

facing danger from extreme weather, geological hazards, urban waterlogging, etc. Thus, cities 

are motivated to fight against climate change. 

Although climate policies are usually designed at the national level, they are implemented at 

the city level. Without support from local city governments, national policies cannot be 

effectively executed. Considering that cities have different natural resource endowments and 

development pathways, each should have specific emission reduction actions that are 

designed based on that city’s unique emission characteristics. In China, this is particularly true. 

There are over 330 cities in China, and they are at different stages of industrialization, with 

distinct development pathways. Therefore, cities are the key components in climate change 

policymaking, and many low-carbon projects and actions have been taken at the city level, 

such as the Local Governments for Sustainability (ICLEI) and the C40 Cities Climate Leadership 

Group (C40). 

Understanding the emissions characteristics of cities is the foundation of any further city-level 

climate change actions. Compared to studies focused on national and provincial emissions 

accounts, far fewer have focused on city-level emissions, and those that do have methods 

limitations and geographical restrictions. 

First, previous studies on city-level emissions have severe methodological weaknesses and 

limitations. Most previous city-level greenhouse gas emissions inventories were calculated 

using a bottom-up approach, i.e., by using energy consumption data from surveys of several 

sectors 10-12. The sectors were set differently between studies, making the cities’ CO2 emissions 

inconsistent and not comparable across studies, as well as inconsistent with the national and 

regional emission inventories. In addition, some studies used spatial and geographical analysis 
13,14, night-time light imagery 15,16, or economic models 17,18 to account for city emissions. These 

models can only estimate the overall CO2 emissions of a city. They cannot exactly determine 

the contributions of emission sources (i.e., energy types or socioeconomic sectors). 

Second, most of the previous studies on city-level emissions focused on megacities from 

developed countries with consistent and transparent data sources, especially US cities 19-23. 

Currently, city-level emissions are being studied from a more international perspective by 

analysing more global cities, especially cities from developing countries 24-30. Restricted by 

data availability, the CO2 emissions from Chinese cities are far behind in their documentation. 

Sugar, et al. 31 reported emissions for Beijing, Tianjin, and Shanghai in 2006 and compared the 

three cities’ emissions with those of ten other global cities. Wang, et al. 10 discussed the CO2 

emissions from 12 Chinese megacities, most of which are provincial capital cities. Dhakal 8 

examined the energy consumption and CO2 emissions of all Chinese provincial cities. Zhou, et 

al. 32 and Xu, et al. 33 account for the CO2 emissions of specific city clusters, such as the 

Guangdong Bay cities and cities in the central plain. Ramaswami, et al. 34 in the cited study 

and a follow-up study developed a comprehensive emission database including the scope 1 

and scope 2 CO2 emissions of 233 prefecture-level and 637 county-level cities in China 35. 

Thus, the previous assessments of city-level emissions either focused on total emissions (or 

combined emissions for several sectors) or on megacities with consistent and systematic 
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energy statistics. Previous analyses of the bottom-up sector-based emissions of cities are 

inconsistent with national and regional emission inventories, making multi-scale emission 

studies unavailable. Additionally, such general emission data cannot support detailed city-

level emission analysis and related emission reduction policy making. 

The dataset in this study provides detailed emissions inventories for 182 Chinese cities. The 

inventories are constructed for 17 types of fossil fuel and 47 socioeconomic sectors that are 

consistent with the System of National Accounts. Additional socioeconomic indexes for the 

cities are included in the dataset. The dataset has been re-used in our latest study 1 and will 

facilitate further city-level emissions studies and low-carbon/sustainable development policy 

design. 

Methods 

City boundaries and emission scopes 

This dataset provides the emissions and socioeconomic inventories of 182 Chinese cities; 

these cities cover 82% (33,880 billion yuan) of the country’s GDP (41,303 billion yuan), 64% 

(860 million) of the population (1,341 million), and 35% (3.4 million km2) of the land area (9.6 

million km2) in 2010 36. Most of the studied cities are located east of the Heihe-Tengchong line, 

where 96% of China’s population lives on 43% of the land. The 182 cities are selected based 

on data availability. 

The term ‘city’ here refers to administrative prefecture-level city rather than to a built-up city. 

Accordingly, the CO2 emissions calculated in this dataset are Intergovernmental Panel on 

Climate Change (IPCC) administrative territorial CO2 emissions, referring to emissions “taking 

place within national (including administered) territories and offshore areas over which the 

country has jurisdiction (page overview.5)” 37. We exclude the emissions induced by 

international aviation and shipping 38. Unlike production- or consumption-based emissions 17, 

the administrative territorial scope quantifies the direct emissions induced by human 

activities within a regional boundary. That is, territorial emissions provide the data baseline 

for emission-related studies and regional carbon control. 

The emission inventories include two components: CO2 emitted from fossil fuel combustion 

(energy-related emissions) and CO2 emitted from industrial production (process-related 

emissions). Process-related emissions refers to CO2 emitted from industrial raw materials 

during chemical reactions, such as CO2 escaping during calcium carbonate (𝐶𝑎𝐶𝑂3) calcination 

in cement production. 

The cities’ emissions inventories are uniform with China’s national and provincial emission 

inventories in scope, format, and data sources 39, making them comparable. 

Emissions calculation and inventory construction 

The energy-related emissions are calculated based on 17 fuels (shown in Table 1) and 47 

socioeconomic sectors (shown in Table 2). The 17 types of fossil fuels are selected based on 

China’s official energy statistical system 36. There are 29 energy types used in the system: 26 

are fossil fuels, one is electricity, one is heat, and one is other energy. As our study only 

accounts for the direct emissions from fossil fuel burning within one city boundary (the IPCC 

administrative territorial scope), the inventories exclude the indirect emissions induced by 
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electricity and heat use. The CO2 emissions related to electricity and heat generation, 

therefore, are calculated based on fuel inputs and allocated to the power plants. We also 

assume that there is no, or little, CO2 emitted from other energy uses. Some of the fossil fuels 

share similar carbon content and have very low consumption volumes; we merge them in the 

emission accounts 39. The 47 socioeconomic sectors are set according to the System of 

National Accounts 40. 

Energy-related CO2 emissions are calculated based on the mass balance theory 41; see 

Equation 1. 

𝐶𝐸𝑖𝑗 = 𝐴𝐷𝑖𝑗 × 𝑁𝐶𝑉𝑖 × 𝐶𝐶𝑖 × 𝑂𝑖𝑗   Equation 1 

where 𝐶𝐸𝑖𝑗  represents the CO2 emissions induced by the combustion of fuel 𝑖 in sector 𝑗, 𝐴𝐷𝑖𝑗 

(activity data) represents fossil fuel combustion by fuel and sector. The emission factor 

(𝑡𝑜𝑛 𝐶𝑂2 𝑡𝑜𝑛⁄ ) is composed of a specific heat value factor- 𝑁𝐶𝑉𝑖 (𝐽 𝑡𝑜𝑛⁄ ) multiplied by the 

carbon content per unit heat value- 𝐶𝐶𝑖  ( 𝑡𝑜𝑛 𝐶𝑂2 𝐽⁄ ) and oxygenation efficiency- 𝑂𝑖𝑗  

(quantified as percentage). Specifically, 𝑁𝐶𝑉𝑖 refers to the heat value produced per physical 

unit of fossil fuel 𝑖 combusted, 𝐶𝐶𝑖 is the carbon content emitted per unit heat value when 

combusting per physical unit of fossil fuel 𝑖, while 𝑂𝑖𝑗  stands for the oxidation ratio of the 

fossil fuel combusted. 

The emission factors (𝑁𝐶𝑉𝑖, 𝐶𝐶𝑖, and 𝑂𝑖𝑗) have been published by international institutions, 

including the IPCC and the United Nations (UN; governmental agencies in China such as the 

National Bureau of Statistics of China (NBS) and the National Development and Reform 

Commission of China (NDRC) 42; and previous studies such as the Multi-resolution Emission 

Inventory for China (MEIC) 43, Liu, et al. 44. Liu, et al. 44 re-evaluated the carbon content of raw 

coal samples from 4,243 state-owned Chinese coal mines and found that the emission factors 

for Chinese coal are, on average, 40% lower than the default values recommended by the IPCC. 

After comparing Liu, et al. 44 emissions factors with eight different sources, our previous study 

finds that Liu, et al. 44 emission factors are relatively lower than others (shown in Table 3). The 

seven sets of emission factors are collected from IPCC, NBS, NDRC, NC1994, NC2005, MEIC, 

UN-China, and UN-average. Generally, coal-related fuels have a larger range than oil- and gas-

related fuels. Liu, et al. 44’s re-evaluated emission factors have already been widely used by 

many studies and institutions to calculate China’s emission inventory, including China’s third 

official emission inventory 2012 45. Thus, this study uses the above-mentioned updated 

emission factors. Table 1 gives the net caloric value (𝑁𝐶𝑉𝑖) and carbon content (𝐶𝐶𝑖). Table 4 

shows the sector-specific oxygenation efficiency (𝑂𝑖𝑗), which considers sector discrepancies 

in technical level 39. 

The process-related CO2 emissions (𝐶𝐸𝑡) are calculated in Equation 2 41. We include seven 

industrial processes, including cement production (for approximately 70% of the total 

process-related emissions in China 45,46), lime production (the 2nd largest emissions source 47), 

ammonia production, soda ash production, ferrochromium production, silicon metal 

production, and unclassified ferro-production. The process-related emissions are allocated to 

the corresponding sectors in the emission inventory. Cement and lime-related emissions are 

allocated to the sector “Non-metal Mineral Products”; ammonia and soda ash-related 

emissions are allocated to the sector “Raw Chemical Materials and Chemical Products”; 
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Ferrochromium, silicon metal, and unclassified ferro-related emissions are allocated to the 

sector “Smelting and Pressing of Ferrous Metals”. 

𝐶𝐸𝑡 = 𝐴𝐷𝑡 × 𝐸𝐹𝑡  Equation 2 

𝐴𝐷𝑡 and 𝐸𝐹𝑡 in the equation refer to industrial production (activity data) and emission factors, 

respectively. The emission factors of industrial processes are collected from IPCC 41 and NDRC 
42, as shown in Table 5. 

The cities’ CO2 emissions matrices (namely, inventories) are created as 19 columns and 48 

rows. Seventeen fossil fuel-related emissions, process-related emissions and total emissions 

are represented by 19 columns, while 47 rows correspond to the 47 socioeconomic sectors. 

Each element of the matrices is identified as the CO2 emissions from fossil fuel 

combustion/industrial production in the corresponding sector. An inventory of Beijing is given 

in Table 6 as an example. 

These methods on emission inventory construction are expanded version of descriptions in 

our related work 39. MATLAB R2014a is used to construct the cities’ emission inventories. We 

provided the MATLAD code in the Supplementary Information. We also provided the activity 

data of the cities for additional data transparency and verifiability (see “China city-level Energy 

inventory, 2010”, Data Citation 1). Researchers will be able to use the MATLAB code and 

energy inventories to recalculate the emission inventories for the cities or replicate to other 

cities. 

Activity data collection 

Fossil fuel combustion, i.e., the activity data for energy-related emission accounts, includes 

two parts: the energy inputs for electricity/heat generation and the total final consumption. 

Other inputs for energy transformation, such as coal cleaning or petroleum refineries, transfer 

the carbon element from one fuel to another. These processes emit little CO2. Following our 

previous emissions inventories constructed for China and its provinces 39, fossil fuel 

combustion can be collected from a region’s energy balance table (EBT) and final energy 

consumption can be captured by the industrial sector (𝐸𝑛𝑒𝑟𝑔𝑦𝑖𝑗). The EBT provides each fossil 

fuel’s transformation and final consumption in farming, industry, construction, three service 

sectors, and households (rural and urban). As the entire industry sector consists of 40 sub-

sectors, 𝐸𝑛𝑒𝑟𝑔𝑦𝑖𝑗 presents the sectoral consumption of fossil fuel for the industry sector. 

Generally, the EBT and 𝐸𝑛𝑒𝑟𝑔𝑦𝑖𝑗 can be found in a city’s statistical yearbook. However, due 

to the poor data quality of city-level statistics, not all cities’ yearbooks publish the EBT or 

𝐸𝑛𝑒𝑟𝑔𝑦𝑖𝑗. We developed a series of methods in our previous study to estimate missing data 
48: 

1) EBT: Very few cities have EBT in their statistical yearbooks. We scale down the 

corresponding provincial EBT to obtain the city table. We use each sector’s GDP to 

estimate farming, construction, and three service sectors, assuming that the city has 

the same farming/construction/service energy intensity as its province. We also use 

the urban/rural population to estimate the urban/rural household energy estimation 

on the premise that the city has the same per capita residential energy consumption 
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as its province. The GDP and population data are collected from statistical yearbooks 

for the cities and their corresponding provinces. 

2) 𝐸𝑛𝑒𝑟𝑔𝑦𝑖𝑗: Some cities only provide 𝐸𝑛𝑒𝑟𝑔𝑦𝑖𝑗 from enterprises of above-designated-

size (ADS). ADS enterprises are defined as enterprises with prime operating revenue 

over 20 or 5 million yuan for different cities. ADS enterprises account for 50% to 90% 

(roughly) of one city’s total industrial output. We use the ADS industrial output ratio 

(calculated as the whole-industry output divided by the ADS enterprises’ output) to 

scale up ADS 𝐸𝑛𝑒𝑟𝑔𝑦𝑖𝑗  and obtain sectoral fossil fuel consumption at the whole-

industry scale. 

As for cement production, the cities’ statistical yearbooks provide total cement production or 

production from ADS enterprises. We then scaled up the ADS cement production by the ADS 

industrial output ratio to obtain the total cement production. 

The raw activity data are collected through a “crowd-sourcing” working mode implemented 

in the Applied Energy Summer School 2017 and 2018. Over 100 students joined the summer 

school and participated in data collection. The summer school will be held annually in the 

future, and more researchers will contribute to and update city-level data collection. 

These methods on city-level data estimation and collection are expanded version of 

descriptions in our related work 48. 

Socioeconomic indexes 

This study collects several socioeconomic indexes for the 182 cities from the “China City 

Statistical Yearbook” 49, including: 

1) population, in 10 thousand; 

2) employed population, in 10 thousand; 

3) employed population in sectors (primary industry; mining; manufacturing, electric 

power, gas and water production and supply; construction; transport, storage and 

post; information transmission, computer services and software industry; wholesale 

and retail trade; hotel and catering services; financial intermediation; real estate; 

leasing and business services; scientific research, technical services and geological 

exploration; water, environmental and public facilities management; resident services 

and other services; education; health, social security and social welfare; culture, 

sports and entertainment; public administration and social organization), in 10 

thousand; 

4) area, in square kilometres; 

5) built up area, in square kilometres; 

6) gross domestic product (GDP), in 10 thousand yuan; 

7) primary industry, secondary industry, and tertiary industry’s share in GDP, in %; 

8) industrial output, in 10 thousand yuan. 

The socioeconomic indexes (as shown in Table 7 and “China city-level socioeconomic 

inventory, 2010”, Data Citation 1) can be used to explore the drivers and characteristics of 

cities’ emissions. 
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Data Records 

A total of 365 data records (emissions-socioeconomic inventories) are contained in the 

datasets. Of these, 

 182 are emissions inventories for cities (2010) [“China city-level emissions inventory, 
2010”, Data Citation 1]; 

 182 are energy inventories for cities (2010) [“China city-level energy inventory, 2010”, 
Data Citation 1]; 

 1 is a socioeconomic inventory for cities (2010) [“China city-level socioeconomic 
inventory, 2010”, Data Citation 1]; 

The cities’ CO2 emissions inventories are constructed at an IPCC territorial administrative 

scope, including both energy-related emissions (from fossil fuel combustion) and process-

related emissions (from cement production). The socioeconomic inventory presents GDP, 

population, employed population (with structure), GDP (with structure), and area of the 182 

cities.  

Technical Validation 

Uncertainties 

CO2 emissions inventories gather the contributions of economic activity to total CO2 emissions 

for a given time period and area. Inventories are critical to many environmental decision-

making processes and scientific goals. Policymaking and scientific research require reliable 

inventories to ensure the effectiveness of the policy process. In both types of applications, it 

is important to understand the uncertainty in emissions inventories. Additionally, uncertainty 

analysis can improve the accuracy of emissions accounts. Regarding the city-level CO2 

emissions inventories in this article, the literature shows that uncertainty regarding the 

process-related emissions in cement production is low. The inventories’ uncertainty mainly 

depends on energy-related emissions part 44,50. The contributing sources of uncertainty for 

energy-related emissions accounting are associated with emission factors, activity data and 

other estimation parameters (Volume 1, Chapter 3, Page 6)” 41. The uncertainty induced by 

emissions factors and energy activity data are both quantified for the cities’ emission 

inventories. 

1) Uncertainties in activity data and emission factors 

China’s energy data are of relatively poor quality compared with those of developed countries, 

especially city-level data. The literature also shows that the uncertainties range widely from 

sector to sector. The coefficient of variation (CV; the standard deviation divided by the mean) 

is used to quantify the uncertainty. According to a field survey led by previous studies, the 

fossil fuel consumed in China’s power generation sector has the lowest CV (5%) 51,52, compared 

with primary industry (30%) 53, other manufacturing sectors (10%), construction (10%) 41,54, 

transportation sector (16%) 55, and residential energy use (20%) 41. The sources of 

uncertainties could lie in the opaqueness in China’s statistical systems, especially on the 

“statistical approach on data collection, reporting and validation (Page 673)” 56 and the 

dependence of China’s statistics departments on other government departments. Such 

uncertainties result in a large gap between China’s national fossil fuel consumption data and 
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the aggregated provincial data. To cover the gap, China has adjusted its energy data three 

times since 2004, resulting in a gap between the latest national fossil fuel consumption data 

and provincial aggregated data of 5% 57. The gap between city-level aggregated energy 

consumption and the national overall data could be even larger. 

Previous studies have debated China’s emission factors 58-61. The range of emission factors 

across different sources is as high as 40%. This study collects emission factors from Liu, et al. 
44, which measured them based on a broad investigation of China’s fuel quality. Based on the 

statistical analysis of surveyed fuel quality, the CVs of coal-, oil-, and gas-related fuels are 

estimated as 3%, 1%, and 2%, respectively. 

2) Monte Carlo simulations 

Monte Carlo methods are used to simulate the uncertainties resulting from both fossil fuel 

combustion and emissions factors to estimate the overall uncertainty of the emissions 41. 

Monte Carlo simulations select random values for the emission factor and activity data (fossil 

fuel consumption) from within their individual normal probability (density) functions and 

calculate the corresponding emission values (chapter 6 IPCC 41). To perform Monte Carlo 

simulations, we first set up probability density functions for each input variable (emission 

factor and activity data). Both variables are assumed to follow a normal distribution 44. Then, 

we randomly sample both the activity data and the emission factors 20,000 times and obtain 

20,000 CO2 emission estimations. The uncertainties are obtained at a 97.5% confidence level 

and are calculated as the 97.5% confidence intervals of the estimates. 

This article finds that the average uncertainties in the cities’ total CO2 emissions range from -

3.65% to 3.67% at a 97.5% confidence level (±47.5% confidence interval around the estimate). 

Hegang in Heilongjiang has the highest uncertainties in emissions of (-5.83%, 5.86%), while 

Huizhou in Guangxi has the lowest value of (-0.91%, 0.91%). 

Limitations and future work 

The cities’ emission inventories have some limitations that could lead to more uncertainty. 

Although these uncertainties may not be large enough to quantify, they are an indispensable 

component of the emission inventories’ uncertainties. First, this study only takes the energy-

related and process-related emissions from seven industrial production processes into 

account in the emission accounts, and emissions emitted by other sources is missing, such as 

“agriculture”, “land-use change and forestry”, “waste”, and other industrial processes. Thus, 

the analysis incomplete. In the future, we will expand the emission scope to achieve more 

complete inventories for cities. Second, the cities’ emission factors for fossil fuels and 

industrial processes are substituted by national average emission factors during the process 

of accounting for cities’ CO2 emissions, resulting in inaccuracy. We hope that specific city-level 

emissions factors could be updated in the future to increase the accuracy of our results. If not, 

in our future research, we could employ provincial emission factors to obtain a more accurate 

emission inventory for the provinces. Third, due to the poor data quality for the cities, the 

EBTs of most cities are a downscaled version of the provincial table, assuming that the cities 

have the same sectoral energy intensity and per capita residential energy consumption with 

their provinces. Such assumptions bring additional uncertainties to cities’ emission inventories. 

In the future, a consistent time-series emission inventory dataset for Chinese cities will be 
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completed. We will integrate the bottom-up estimations (calculated based on survey data 

from enterprises) 14 and satellite observations to achieve more emission accounts for these 

cities. More specifically, the high-resolution bottom-up emissions and satellite images can 

confirm some of the cities’ emission sources (i.e. some super-emitting points). The night-light 

data will also be used to verify our top-down emissions inventories 16,62. 
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