199 research outputs found

    Tumour suppressor function of MDA-7/IL-24 in human breast cancer

    Get PDF
    Introduction Melanoma differentiation associated gene-7 (MDA-7), also known as interleukin (IL)-24, is a tumour suppressor gene associated with differentiation, growth and apoptosis. However, the mechanisms underlying its anti-neoplastic activity, tumour-specificity and efficacy across a spectrum of human cancers have yet to be fully elucidated. In this study, the biological impact of MDA-7 on the behavior of breast cancer (BC) cells is evaluated. Furthermore, mRNA expression of MDA-7 is assessed in a cohort of women with BC and correlated with established pathological parameters and clinical outcome. Methods The human BC cell line MDA MB-231 was used to evaluate the in-vitro impact of recombinant human (rh)-MDA-7 on cell growth and motility, using a growth assay, wounding assay and electric cell impedance sensing (ECIS). Localisation of MDA-7 in mammary tissues was assessed with standard immuno-histochemical methodology. BC tissues (n = 127) and normal tissues (n = 33) underwent RNA extraction and reverse transcription, MDA-7 transcript levels were determined using real-time quantitative PCR. Transcript levels were analyzed against tumour size, grade, oestrogen receptor (ER) status, nodal involvement, TNM stage, Nottingham Prognostic Index (NPI) and clinical outcome over a 10 year follow-up period. Results Exposure to rh-MDA-7 significantly reduced wound closure rates for human BC cells in-vitro. The ECIS model demonstrated a significantly reduced motility and migration following rh-MDA-7 treatment (p = 0.024). Exposure to rh-MDA-7 was only found to exert a marginal effect on growth. Immuno-histochemical staining of human breast tissues revealed substantially greater MDA-7 positivity in normal compared to cancer cells. Significantly lower MDA-7 transcript levels were identified in those predicted to have a poorer prognosis by the NPI (p = 0.049) and those with node positive tumours. Significantly lower expression was also noted in tumours from patients who died of BC compared to those who remained disease free (p = 0.035). Low levels of MDA-7 were significantly correlated with a shorter disease free survival (mean = 121.7 vs. 140.4 months, p = 0.0287) on Kaplan-Meier survival analysis. Conclusion MDA-7 significantly inhibits the motility and migration of human BC cells in-vitro. MDA-7 expression is substantially reduced in malignant breast tissue and low transcript levels are significantly associated with unfavourable pathological parameters, including nodal positivity; and adverse clinical outcomes including poor prognosis and shorter disease free survival. MDA-7 offers utility as a prognostic marker and potential for future therapeutic strategies

    European Sea Bass (Dicentrarchus labrax) immune status and disease resistance are impaired by arginine dietary supplementation

    Get PDF
    Infectious diseases and fish feeds management are probably the major expenses in the aquaculture business. Hence, it is a priority to define sustainable strategies which simultaneously avoid therapeutic procedures and reinforce fish immunity. Currently, one preferred approach is the use of immunostimulants which can be supplemented to the fish diets. Arginine is a versatile amino acid with important mechanisms closely related to the immune response. Aiming at finding out how arginine affects the innate immune status or improve disease resistance of European seabass (Dicentrarchus labrax) against vibriosis, fish were fed two arginine-supplemented diets (1% and 2% arginine supplementation). A third diet meeting arginine requirement level for seabass served as control diet. Following 15 or 29 days of feeding, fish were sampled for blood, spleen and gut to assess cell-mediated immune parameters and immune-related gene expression. At the same time, fish from each dietary group were challenged against Vibrio anguillarum and survival was monitored. Cell-mediated immune parameters such as the extracellular superoxide and nitric oxide decreased in fish fed arginine-supplemented diets. Interleukins and immune-cell marker transcripts were down-regulated by the highest supplementation level. Disease resistance data were in accordance with a generally depressed immune status, with increased susceptibility to vibriosis in fish fed arginine supplemented diets. Altogether, these results suggest a general inhibitory effect of arginine on the immune defences and disease resistance of European seabass. Still, further research will certainly clarify arginine immunomodulation pathways thereby allowing the validation of its potential as a prophylactic strategy.European Union's Seventh Framework Programme AQUAEXCEL (Aquaculture Infrastructures for Excellence in European Fish Research) [262336]; AQUAIMPROV [NORTE-07-0124-FEDER-000038]; North Portugal Regional Operational Programme (ON. 2 - O Novo Norte) , under the National Strategic Reference Framework, through the European Regional Development Fund; North Portugal Regional Operational Programme (ON. 2 - O Novo Norte), under the National Strategic Reference Framework through the COMPETE - Operational Competitiveness Programme; Fundacao para a Ciencia e Tecnologia; Fundacao para a Ciencia e Tecnologia [SFRH/BD/89457/2012, SFRH/BPD/77210/2011]; Generalitat Valenciana through the project REVIDPAQUA [ISIC/2012/003]; [PEst-C/MAR/LA0015/2013]; [UID/Multi/04423/2013]info:eu-repo/semantics/publishedVersio

    Genetic variations in APPL2 are associated with overweight and obesity in a Chinese population with normal glucose tolerance

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>APPL1 and APPL2 are two adaptor proteins, which can mediate adiponectin signaling via binding to N terminus of adiponectin receptors in muscle cells. Genes encoding adiponectin and adiponectin receptors contribute to insulin resistance and the risk of obesity, and genetic variants of <it>APPL1 </it>are associated with body fat distribution. However, the association between genetic variations of <it>APPL2 </it>and metabolic traits remains unknown. In the current study, we aimed to test the impacts of <it>APPL2 </it>genetic variants on obesity in a Chinese population with normal glucose tolerance.</p> <p>Methods</p> <p>We genotyped six single nucleotide polymorphisms (SNPs) in <it>APPL2 </it>in 1,808 non-diabetic subjects. Overweight and obesity were defined by body mass index (BMI). Obesity-related anthropometric parameters were measured, including height, weight, waist circumference, hip circumference. BMI and waist-hip ratio (WHR) were calculated.</p> <p>Results</p> <p>We found significant evidence of association with overweight/obesity for rs2272495 and rs1107756. rs2272495 C allele and rs1107756 T allele both conferred a higher risk of being overweight and obese (OR 1.218, 95% CI 1.047-1.416, <it>p </it>= 0.011 for rs2272495; OR 1.166, 95% CI 1.014-1.341, <it>p </it>= 0.031 for rs1107756). After adjusting multiple comparisons, only the effect of rs2272495 on overweight/obesity remained to be significant (empirical <it>p </it>= 0.043). Moreover, we investigated the effects of these SNPs on obesity-related quantitative traits in all participants. rs2272495 was associated with BMI (<it>p </it>= 0.015), waist circumference (<it>p </it>= 0.006), hip circumference (<it>p </it>= 0.025) as well as WHR (<it>p </it>= 0.047) under a recessive model. Similar associations were found for rs1107756 except for WHR.</p> <p>Conclusion</p> <p>This study suggests that genetic variations in <it>APPL2 </it>are associated with overweight and obesity in Chinese population with normal glucose tolerance.</p

    Protein-Protein Interaction Site Predictions with Three-Dimensional Probability Distributions of Interacting Atoms on Protein Surfaces

    Get PDF
    Protein-protein interactions are key to many biological processes. Computational methodologies devised to predict protein-protein interaction (PPI) sites on protein surfaces are important tools in providing insights into the biological functions of proteins and in developing therapeutics targeting the protein-protein interaction sites. One of the general features of PPI sites is that the core regions from the two interacting protein surfaces are complementary to each other, similar to the interior of proteins in packing density and in the physicochemical nature of the amino acid composition. In this work, we simulated the physicochemical complementarities by constructing three-dimensional probability density maps of non-covalent interacting atoms on the protein surfaces. The interacting probabilities were derived from the interior of known structures. Machine learning algorithms were applied to learn the characteristic patterns of the probability density maps specific to the PPI sites. The trained predictors for PPI sites were cross-validated with the training cases (consisting of 432 proteins) and were tested on an independent dataset (consisting of 142 proteins). The residue-based Matthews correlation coefficient for the independent test set was 0.423; the accuracy, precision, sensitivity, specificity were 0.753, 0.519, 0.677, and 0.779 respectively. The benchmark results indicate that the optimized machine learning models are among the best predictors in identifying PPI sites on protein surfaces. In particular, the PPI site prediction accuracy increases with increasing size of the PPI site and with increasing hydrophobicity in amino acid composition of the PPI interface; the core interface regions are more likely to be recognized with high prediction confidence. The results indicate that the physicochemical complementarity patterns on protein surfaces are important determinants in PPIs, and a substantial portion of the PPI sites can be predicted correctly with the physicochemical complementarity features based on the non-covalent interaction data derived from protein interiors

    Echinococcus multilocularis and Echinococcus shiquicus in a small mammal community on the eastern Tibetan Plateau : host species composition, molecular prevalence, and epidemiological implications

    Get PDF
    Background The eastern part of the Tibetan Plateau is now recognized as an endemic region with the highest reported human infection rates in the world of human alveolar echinococcosis (AE) caused by Echinococcus multilocularis. Existing epidemiological studies on AE have mainly focused on the synanthropic environment, while basic parasitological and ecological aspects in wildlife host species remain largely unknown, especially for small mammal hosts. Therefore, we examined small mammal host species composition, occurrence, and the prevalence of both E. multilocularis and E. shiquicus in Shiqu County (Sichuan Province, China), eastern Tibetan Plateau. Results In total, 346 small mammals from five rodent and one pika species were trapped from four randomly set 0.25 ha square plots. Two vole species, Lasiopodomys fuscus (n = 144) and Microtus limnophilus (n = 44), and the plateau pika (Ochotona curzoniae) (n = 135), were the three most-dominant species trapped. Although protoscoleces of E. multilocularis and E. shiquicus were only observed in L. fuscus and O. curzoniae, respectively, cox1 and nad1 gene DNA of E. shiquicus was detected in all the small mammal species except for Neodon irene, whereas E. multilocularis was detected in the three most-dominant species. The overall molecular prevalence of Echinococcus species was 5.8 (95% CI: 3.3–8.2%) ~ 10.7% (95% CI: 7.4–14.0%) (the conservative prevalence to the maximum prevalence with 95% CI in parentheses), whereas for E. multilocularis it was 4.3 (95% CI: 2.2–6.5%) ~ 6.7% (95% CI: 4.0–9.3%), and 1.5 (95% CI: 0.2–2.7%) ~ 4.1% (95% CI: 2.0–6.1%) for E. shiquicus. The prevalence of both E. multilocularis and E. shiquicus, was significantly higher in rodents (mainly voles) than in pikas. Phylogenetic analyses revealed that Echinococcus haplotypes of cox1 from small mammal hosts were actively involved in the sylvatic and anthropogenic transmission cycles of E. multilocularis in the eastern Tibetan Plateau. Conclusions In contrast to previous studies, the current results indicated that rodent species, rather than pikas, are probably more important natural intermediate hosts of E. multilocularis and E. shiquicus in the eastern Tibetan Plateau. Thus, understanding interspecific dynamics between rodents and pikas is essential to studies of the echinococcosis transmission mechanism and human echinococcosis prevention in local communities. Keywords: Echinococcus multilocularis, E. shiquicus, Small mammal Prevalence, Tibetan Platea

    Hydrogen Sulfide and Neurogenic Inflammation in Polymicrobial Sepsis: Involvement of Substance P and ERK-NF-κB Signaling

    Get PDF
    Hydrogen sulfide (H2S) has been shown to induce transient receptor potential vanilloid 1 (TRPV1)-mediated neurogenic inflammation in polymicrobial sepsis. However, endogenous neural factors that modulate this event and the molecular mechanism by which this occurs remain unclear. Therefore, this study tested the hypothesis that whether substance P (SP) is one important neural element that implicates in H2S-induced neurogenic inflammation in sepsis in a TRPV1-dependent manner, and if so, whether H2S regulates this response through activation of the extracellular signal-regulated kinase-nuclear factor-κB (ERK-NF-κB) pathway. Male Swiss mice were subjected to cecal ligation and puncture (CLP)-induced sepsis and treated with TRPV1 antagonist capsazepine 30 minutes before CLP. DL-propargylglycine (PAG), an inhibitor of H2S formation, was administrated 1 hour before or 1 hour after sepsis, whereas sodium hydrosulfide (NaHS), an H2S donor, was given at the same time as CLP. Capsazepine significantly attenuated H2S-induced SP production, inflammatory cytokines, chemokines, and adhesion molecules levels, and protected against lung and liver dysfunction in sepsis. In the absence of H2S, capsazepine caused no significant changes to the PAG-mediated attenuation of lung and plasma SP levels, sepsis-associated systemic inflammatory response and multiple organ dysfunction. In addition, capsazepine greatly inhibited phosphorylation of ERK1/2 and inhibitory κBα, concurrent with suppression of NF-κB activation even in the presence of NaHS. Furthermore, capsazepine had no effect on PAG-mediated abrogation of these levels in sepsis. Taken together, the present findings show that H2S regulates TRPV1-mediated neurogenic inflammation in polymicrobial sepsis through enhancement of SP production and activation of the ERK-NF-κB pathway

    Regulation and functional role of the Runt-related transcription factor-2 in pancreatic cancer

    Get PDF
    Recent evidence suggests that Runt-related transcription factors play a role in different human tumours. In the present study, the localisation of the Runt-related transcription factor-2 (Runx2), its transcriptional activity, as well as its regulation of expression was analysed in human pancreatic ductal adenocarcinoma (PDAC). Quantitative real-time PCR and immunohistochemistry were used for Runx2 expression and localisation analysis. Runt-related transcription factor-2 expression was silenced using specific siRNA oligonucleotides in pancreatic cancer cells (Panc-1) and immortalised pancreatic stellate cells (IPSCs). Overexpression of Runx2 was achieved using a full-length expression vector. TGF-β1, BMP2, and other cytokines were assessed for their potential to regulate Runx2 expression. There was a 6.1-fold increase in median Runx2 mRNA levels in PDAC tissues compared to normal pancreatic tissues (P<0.0001). Runt-related transcription factor-2 was localised in pancreatic cancer cells, tubular complexes, and PanIN lesions of PDAC tissues as well as in tumour-associated fibroblasts/stellate cells. Coculture of IPSCs and Panc-1 cells, as well as treatment with TGF-β1 and BMP2, led to increased Runx2 expression in Panc-1 cells. Runt-related transcription factor-2 overexpression was associated with decreased MMP1 release as well as decreased growth and invasion of Panc-1 cells. These effects were reversed by Runx2 silencing. In conclusion, Runx2 is overexpressed in PDAC, where it is regulated by certain cytokines such as TGF-β1 and BMP2 in an auto- and paracrine manner. In addition, Runx2 has the potential to regulate the transcription of extracellular matrix modulators such as SPARC and MMP1, thereby influencing the tumour microenvironment

    Small molecules, big targets: drug discovery faces the protein-protein interaction challenge.

    Get PDF
    Protein-protein interactions (PPIs) are of pivotal importance in the regulation of biological systems and are consequently implicated in the development of disease states. Recent work has begun to show that, with the right tools, certain classes of PPI can yield to the efforts of medicinal chemists to develop inhibitors, and the first PPI inhibitors have reached clinical development. In this Review, we describe the research leading to these breakthroughs and highlight the existence of groups of structurally related PPIs within the PPI target class. For each of these groups, we use examples of successful discovery efforts to illustrate the research strategies that have proved most useful.JS, DES and ARB thank the Wellcome Trust for funding.This is the author accepted manuscript. The final version is available from Nature Publishing Group via http://dx.doi.org/10.1038/nrd.2016.2
    corecore