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Abstract 

Protein-protein interactions (PPIs) are of pivotal importance in the regulation of 

biological systems and consequently are implicated in the development of disease 

states. Recent work has begun to show that, with the right tools, certain classes of PPI 

can yield to the efforts of medicinal chemists, and the first PPI inhibitors have reached 

clinical development. In this review we describe the research leading to these 

breakthroughs and highlight that within the PPI target-class there exist groups of 

structurally-related PPIs. For each of these groups we use examples of successful 

discovery efforts to highlight the research strategies that have proved most useful. 
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Introduction 

The importance of the complex network of direct interactions between proteins, 

known as the interactome, to both biological systems and to the development of 

disease-states is widely recognized. Despite this, inhibitors that function by directly 

disrupting the interaction between two proteins remain an under-represented target 

class in drug discovery and PPIs are viewed as challenging, and in some cases 

essentially ‘undruggable’. However, work in recent years has begun to show that 

certain classes of PPI are amenable to small molecule inhibition; typically these 

inhibitors disrupt the interaction between a globular protein and a single peptide chain 

on the partner protein and do so by binding into pockets on the surface of the globular 

protein. PPIs can be classified into groups based on common structural elements in 

both the globular protein and the peptide chain. Most notably, the presence of 

secondary structural features within the peptide-chain such as α-helices and β-strands 

has important ramifications for the design of inhibitors functioning by mimicking and 

displacing these peptides. In this review we explore emerging evidence that within a 

given structural class certain drug discovery strategies may be more applicable than 

others – thus providing guidance to researchers entering the field. We focus 

specifically on small molecules that inhibit PPIs by interacting directly with the 

binding interface of one protein partner rather than through an allosteric mechanism 

or binding at a catalytic site.   

Structural biology and classification of PPIs 

Structural biology often plays a central role in PPI research. Generally, PPI projects 

are supported by X-ray crystallography, although some groups have had great success 

with protein-based NMR spectroscopy1. Whilst it might be preferable to have access 

to a structure of the complete PPI to inform a drug-discovery effort, in practice one or 

both of the proteins is often truncated or modified to facilitate the structural biology. 

Typically, on-going structural information is obtained during the hit identification and 

optimisation process from X-ray or NMR structures of key compounds bound to the 

target. Further information can be gleaned from apo structures of globular protein but 

partners that can reveal significant conformational changes that may occur on 

binding. High-resolution protein X-ray structures can also reveal the location of water 

molecules at the protein surfaces. Analysis of water networks combined with 
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computational approaches can allow assessment of whether such waters should be 

displaced or treated as effectively part of the protein surface2. 

A critical development in the understanding of PPIs was the realisation that the 

interactions driving the affinity of a pair of proteins are not distributed evenly across 

their surfaces. Rather, certain residues or regions, termed hot-spots, are largely 

responsible for driving binding. This can be explored experimentally by a process 

known as alanine-scanning or hot-spot analysis3, 4. Thus the impact of sequentially 

mutating residues to alanine (or alanine residues to glycine) on the affinity of a pair of 

proteins can be measured. Within the literature a degree of ambiguity exists as to 

whether a hot-spot must be a specific residue or whether it can also refer to a cluster 

of residues such as those giving rise to a pocket – sometimes called a hot-region. For 

clarity, we have chosen to use the terms ‘hot-spot residues’ and ‘hot-spot pockets’ to 

clarify the nature of the hot-spot to which were are referring. 

The buried surface area for protein-protein interfaces for which inhibitors have been 

discovered, varies between 1000-6000 Å2 5. Under 2000 Å2 the total interaction 

surface is usually limited to a single patch whereas larger interactions are typically 

composed of several patches, separated by solvent-exposed residues6. There is no 

simple correlation between the total surface area buried upon complexation and 

binding affinity; hot-spots contribute disproportionately more binding energy4.  

Analysis of alanine scanning data indicates a preference for Trp, Tyr and Arg as hot-

spot residues.  To a lesser extent the polar residues Asp, and His are also enriched4.  It 

has been proposed that hot-spots interact cooperatively and tend not to be distributed 

evenly over the interface but group within tightly packed local clusters7. 

Unsurprisingly, hot-spot residues identified from alanine scanning studies are 

structurally conserved7.  On exposed protein surfaces, the conservation of a Trp 

residue, and to a lesser extent Phe or Met, correlates with a PPI binding site8.  Others 

have reported an increased frequency of Trp and Tyr at PPI interfaces as compared to 

solvent-exposed protein surfaces9.  An analysis by Hu et al. found a similar pattern 

but also highlighted the propensity for polar amino acids such as Arg, Asp and His in 

PPI interfaces10.  The importance of polar interactions in PPIs has also been 

recognised and discussed11.  
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Methods for experimentally detecting PPIs have been recently reviewed12 and will not 

be commented on further here. Bioinformatic approaches have also been useful12, for 

example in identifying putative interactions through sequence similarity with known 

human PPIs or phylogenetic analysis of PPIs from lower-order eukaryotic species13.  

A combined analytic-prediction approach has recently estimated the entire 

interactome to involve 300,000 binary interactions14. Several databases have been 

created to aid study of PPIs.15 STRING16 is a database of predicted and known PPIs, 

TIMBAL17 provides small molecule inhibition data, 2P2IDB18, 19 PICCOLO20, and 

others15 provide structural information and analysis. 

PPIs can be homo- or heteromeric and classified as either obligate - strong and long-

lived or non-obligate - weaker and transient21. Looking across a broad set of PPIs, the 

range of affinities spans nearly one million-fold, from the picomolar to high 

micromolar5. It has been proposed that interfaces are often predominantly 

hydrophobic with a surrounding ring of polar residues22 or a mixture of hydrophobic 

patches interspersed with polar interactions and water molecules scattered across the 

interface23. Obligate PPI complexes often resemble a larger globular structure with 

the interface similar to the internal structure of each globular protein.24 On the other 

hand, non-obligate PPI interfaces are typically smaller and not as clearly dominated 

by hydrophobic interactions, this likely reflects the unfavourable energetics of 

exposing a hydrophobic patch to the solvent on dissociation11, 21, 24.  Wells et al. have 

recently discussed classifying interfaces based upon the complexity of the binding 

epitopes.25 

It is helpful to divide PPIs into a series of structural classes (figure 1)26.  

1. Pairs of globular proteins that interact through a discontinuous epitope with no 

significant structural changes on binding.  

2. Interactions between a pair of globular proteins in which one or both proteins 

undergoes significant conformational change on binding.  

3. PPIs involving a globular protein interacting with a single peptide chain. 

4. PPIs between two peptide chains. 
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The latter two classes can be further differentiated, depending on whether the peptides 

undergo significant conformational changes on binding. In some cases the peptide is 

an intrinsically disordered peptide or region of a protein which folds into a specific 

conformation on binding24, whilst in other cases a pre-folded region of a protein 

interacts with the partner protein – although in practice a continuum exists between 

these two extremes. In the pre-folded scenario the remainder of the protein is 

effectively acting as a scaffold to stabilise and present the peptide in a suitable 

conformation for binding. The significance of disordered peptides in PPIs has been 

reviewed24. 

Building on this analysis, in table 1 we highlight here a range of structural classes, 

some of which have been previously proposed27 (table 1). In the latter half of this 

review we take examples of the different classes, expand on their characteristics and 

provide examples of successful small molecule discovery efforts. 

PPIs between a pair of globular proteins, exemplified by the interaction between IL-2 

and IL-2R28 (see below) remain formidable targets for drug discovery. The interaction 

surfaces of such proteins have been found to be flatter on average and thus potentially 

less suitable for the binding of a small molecule ligand29. The interaction between two 

peptidic regions presents a very different challenge owing to the lack of a defined 

binding site, and the potential of one or both peptides to be intrinsically disordered 

when uncomplexed. For example, considerable effort has been put into developing 

inhibitors of the interaction between c-Myc and Max30.  The c-Myc–Max structure 

consists of a four-helix bundle in which each monomer forms two α-helices separated 

by a loop. However, when uncomplexed both of these proteins are intrinsically 

disordered, therefore structural biology of this system is very difficult and the nature 

of any potential binding site is hard to define. In general the reported inhibitors have 

potency only in the micromolar range and their mechanisms of inhibition are not fully 

understood. It should be noted that some of the reported chemotypes contain 

structural elements identified as so-called PAINs31 with the potential to interfere with 

biological assays. Moreover, there is only limited structural evidence showing that 

these inhibitors operate as orthosteric inhibitors of the c-Myc–Max interaction. 

However, Metallo and co-workers have taken a rational approach to validating the 

reported inhibitors. Truncated and mutated proteins were screened to identify the 
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ligand-binding regions, confirming this binding with NMR spectroscopy and circular 

dichroism.32, 33 Despite this work, clearly this is an exceptionally challenging PPI 

from a drug discovery perspective and much work is required to further characterise 

these inhibitors and to develop molecules with the potential to become drugs. 

On the other hand, interactions where one partner interacts through a single peptidic 

region and the other is globular have been proposed to be the more druggable26. When 

bound, the peptide typically adopts one or more secondary structural elements, which 

may or may not be present in the unbound peptide, and which then interact with the 

surface of the globular protein. These structural elements differentiate a series of 

structural groups for which aspects such as strategy and likely success-rate may vary 

quite significantly. In addition, common structural motifs may occur in the globular 

protein. Thus we argue that PPIs with similar secondary structural elements are often 

best tackled using similar strategies. 

In the second half of this review we highlight examples with different structural 

elements and outline the strategies used to tackle them. In the interaction of the 

BAD/BAK peptides with BCl-2, the peptide presents an α-helix into a defined groove 

on the globular protein. Other peptides display a continuous epitope on a β-sheet or 

strand motif, as exemplified by the XIAP–Caspase 9 and Keap1–Nrf2. In some cases 

a single residue on the peptide acts as an anchor group dominating the interaction as is 

seen with the interaction of bromodomains with histones containing acetylated 

lysines. Table 1 provides further examples of PPIs in each of these categories. 

Structural examination generally reveals direct interactions between the hotspots on 

partner proteins. However there is an asymmetry in the nature of the hot-spot 

interactions between globular proteins and peptides: hot-spot residues on the peptide 

typically access hot-spot pockets on the globular protein24. Lead discovery efforts 

targeting PPIs have perhaps inevitably led to the discovery of inhibitors binding to the 

globular partner and thus displacing the peptide: the small molecules typically mimic 

the interactions made by the peptide and place groups into the hot-spot pockets on the 

globular protein. 

Some PPIs, for example RAD51–BRCA234 and HIV integrase–LEDGF27 consist of 

multiple peptide binding elements separated by regions providing little interaction 
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energy. In one sense these can be thought of as being an intermediate case between a 

globular–peptide interaction and a full globular–globular interaction. However, it 

seems that often a single peptide region is dominant, and may provide much of the 

binding energy. In practice, small molecule inhibitors are typically found to bind to 

this single high-affinity region35 and in doing so they disrupt the PPI36.  We argue that 

such cases are best classified structurally using their high affinity sites only. 

Identification of hits and leads against PPIs 

Developing a molecule capable of accessing a series of hot-spot pockets on the 

globular protein surface, whilst keeping molecular properties within conventional 

limits can be challenging. Compared to binding pockets on classical targets, those 

accessed by PPI inhibitors have been found to be smaller in volume and PPI inhibitors 

tend to bind into a higher number of pockets37. The relative clustering of binding hot-

spots has ramifications in the design of small molecule inhibitors, PPI intervention 

with a small molecule is more likely to succeed when interaction hot-spots are tightly 

clustered in space, such as in a short α-helix binding cleft as opposed to being 

distributed over an extended interface38. This picture is further complicated if there 

are significant changes in the globular-protein’s structure between the apo, peptide- 

and inhibitor-bound complexes39.  A wide variety of strategies have been employed to 

identify hits and leads against PPIs. 

Screening strategies 

Lead molecule screening 

Conventional high-throughput screening (HTS) presents a number of challenges when 

targeting PPIs, namely low hit rates, weakly potent hits, and difficulties in removing 

false positives - as discussed by Wendt27.  It is difficult to know to what extent low hit 

rates reflect the inherent limitations of the HTS approach, the relative difficulty of 

binding to a protein surface or the biases of many compound collections towards 

classical target classes. Nevertheless, HTS has been successfully applied, particularly 

to the identification of molecules mimicking a non-continuous epitope consisting of 

side-chains on an α-helix, such as successful screens against MDM2–p5340-43, ZipA–

FtsZ44 and HPV E2–E145.  It is not clear whether this reflects a potential inherent ease 
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of finding hits against these targets or the frequency that they have been screened 

against.  

Screening strategies have also been successfully applied to find natural product 

inhibitors.46  Whilst this approach has led to a wide range of active chemotypes 

against a variety of PPIs, structurally these hits may prove challenging to optimise. 

 

Fragment screening and optimisation 

Over the past decade fragment-based drug discovery (FBDD) has become a standard 

part of the medicinal chemists’ arsenal47-49.  FBDD has been shown to be particularly 

effective against targets such as PPIs, generally viewed as ‘undruggable’15, 50, 51 as 

fragments are not likely to be inherently biased towards one target class over 

another47.  It has been shown that there is a good correlation between hot-spot regions 

of a protein and fragment binding sites51, 52. 

Using FBDD to tackle PPIs presents challenges: firstly, a low affinity fragment hit is 

unlikely to be able to disrupt a PPI. The most common approach is therefore to use a 

screening cascade of biophysical screening techniques to screen for binding to the 

globular protein partner. There is often a trade-off between the throughput of a 

screening technique, the extent of false positives and negatives and also the degree of 

structural information. For this reason many groups use a suite of techniques to 

identify well-characterised hits with defined binding sites53.  The cascade may include 

inter alia thermal shift (TS)54, surface plasmon resonance (SPR)55, ligand- or protein-

based NMR56, X-ray crystallography57 and isothermal titration calorimetry (ITC)58. 

Once a hit has been identified, structural techniques such as protein NMR or X-ray 

crystallography can be used to establish whether the fragment binds at the PPI 

interface or alternatively displacement or blocking experiments with a tool ligand 

(often a peptide derived from the partner protein) can be used to make this 

assessment. This approach has a number of potential weaknesses. Firstly, it may 

prove necessary to mutate the protein target in order for it to be stable in the absence 

of its binding partner53.  Moreover, the energy required to drive conformational 
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changes at the binding-site may render a fragment unable to bind with detectable 

affinity. This latter problem has been circumvented using tethered fragments59. 

The potential benefits of tailoring a fragment library to the PPI target-class have been 

discussed60-62.  Recent data suggests PPI fragment hits to be more likely to be 

charged, somewhat larger and more lipophilic, but no more three-dimensional than 

those against non-PPI targets51. A number of reports have appeared in which potent 

inhibitors discovered by means other than FBDD have been retrospectively 

fragmented to generate compounds that would be unlikely to have been found through 

a fragment-based approach.61, 63, 64.  The energetic costs associated with water 

displacement and conformational mobility have additionally been proposed as 

potential challenges in targeting PPIs with fragments61.   

There are relatively few reports of fragment optimisation to generate improved-

potency leads targeting PPIs, with success against the Bcl-2 family51, XIAP–Caspase-

951, HIV-IN–LEDGF65, RAD51–BRCA-235 and bromodomains51 being notable 

exceptions51.  This may reflect the inherent challenge of accessing two or more hot-

spot pockets separated by regions not offering the potential for increased affinity. In 

our experience it can prove difficult to realise iterative improvements in potency as a 

fragment is gradually grown from one hot-spot pocket towards another66.  Whilst, it 

may seem more attractive to try to link two fragments, each binding to a different hot-

spot pocket; in practice such fragment-linking can be very challenging67. 

 

Rational-design: peptides and peptidomimetics 

The rational design of PPI inhibitors has focussed on efforts to mimic peptides using a 

range of different strategies (figure 2)68. Such mimetics, whether peptide- or non-

peptide-based, have a tendency to fall well outside conventional drug-like space and 

present very different challenges to conventional small molecule drug design.69 

Much design work has been based on the rational design of general scaffolds, 

substituted with the relevant amino acid side-chains, mimicking the 3 major 

recognition motifs found to modulate PPIs: α-helices, β-strands and reverse-turns68.  
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In α-helix interactions, the binding energy is largely derived from the hydrophobic 

interactions of the side-chain residues present on one face of the helix with the partner 

protein (figure 2, A). One design strategy is to seek to modify a helical peptide in 

order to maximise its helicity and possibly also improve its properties70.  Most notable 

in this respect is the rapidly expanding field of peptide stapling71 (figure 2, Aiii). 

Typically metathesis chemistry is used to covalently link non-natural amino acid side-

chains, leading to peptides with improved affinity and cellular penetration72, examples 

of which are being investigated in the clinic73. A related approach seeks to replace the 

hydrogen bonds in a helix with covalent linkers74.  Also of note are β-peptides - 

formed from β-amino acids - which can adopt a number of secondary structural 

elements, notably helices, and may show good pharmacokinetics75, 76. 

An alternative approach is to use non-amino acid building blocks (figure 2, Ai). For 

example, Hamilton has developed a ter-phenyl scaffold with 3 points of attachment to 

represent 3 consecutive amino acids on one face of a helix (i, i+3/4 and i+7 

residues)77.  This approach has been successfully applied to the inhibition of PPIs 

such as Bcl-xL–Bak and MDM2–p5378, 79. Boger designed a polyamide scaffold that 

represents the i, i+4, i+7 residues; improved synthetic ease allowed facile creation of 

an 8,000-member library of mimetics for in vitro screening80.  Despite the high 

affinity of these mimetics, their structural simplicity can result in poor selectivity 

across closely related PPI families.  Seeking to address this, other groups have 

enhanced mimetic complexity81.  

Developing mimetics of continuous epitopes such as β-strands and turns and of short 

peptide sequences with no clear secondary structure presents a very different 

challenge. These generally present an epitope in which hydrophobic side-chain 

interactions and hydrogen bonding interactions with the more exposed peptide 

backbone functionality are important (figure 2, B). The generation of reverse-turn 

mimetics, most notably β-turns, has been applied developing molecules which bind to 

integrins68, SH2 domains such as that of Grb282, 83 and inhibitors of the CD2–C5868 

interaction amongst other targets68.  Mimics of β-strands are less prevalent84, likely 

due to these secondary structure motifs making few hydrophobic interactions; 

typically using hydrophilic amide backbone hydrogen bonding interactions to stretch 

across flat featureless protein surfaces to link residues benefiting from hydrophobic 
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hot-spots. However, designing a mimetic simpler than a sequence of amino acids is 

demanding as such structures have high conformational flexibility and poor metabolic 

stability, consequently efforts have focused on increasing rigidity via conformational 

restraint84.  

Computational approaches 

Computational techniques are commonly used to complement both screening and 

design approaches and to identify focussed screening sets from commercially 

available compound collections85. Given the structure of a PPI it is possible to use 

computational tools to assess druggability and identify possible small molecule 

binding pockets. Dr PIAS86 is a software tool that identifies similarities in pocket 

structure from a database of known PPI inhibitors and targets.  The presence of 

conserved surface residues at interfaces has been exploited to predict where small-

molecules might bind87.  Meireless et al. have suggested the importance of the burial 

of Solvent Accessible Surface Area (SASA) and have introduced the ANCHOR 

system for identifying 'anchoring' residues that are deeply buried upon binding88. 

There have been many reports of computational approaches to PPI inhibitor 

development89, 90 including the use of docking and pharmacophore-based searching91.  

The importance of accurately modelling water molecules has also been highlighted2. 

The flexibility and solvent-exposed nature of PPI binding sites makes the application 

of these approaches to static protein structures challenging.  The frequency with 

which protein conformational changes are observed in crystal structures upon binding 

a protein partner or small molecule ligand39 suggests that virtual screening is unlikely 

to be straightforward.   MD simulations of unbound proteins have shown that 

druggable PPI sites have a higher propensity to form surface pockets than non-PPI 

sites and that these predicted pockets match those found in inhibitor-bound 

structures92.  Brown and Hadjuk have implemented an empirically validated 

'druggability algorithm'93 for snapshots of MD simulations, suggesting an explanation 

for the dynamics and druggability observed for Bcl-xL94. MD simulations with 

halogenated benzene as a probe have been reported as an approach to identify both 

exposed and cryptic pockets from ensembles of protein conformations95.  

Conformational mobility can also be revealed experimentally, for example through 

analysis of crystal binding interactions that may reveal cryptic pockets opened by 
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crystal contacts96.  Consideration of conformational ensembles and their relative 

energetics should prove to be a useful tool for targets where large conformational 

changes are expected.  The prediction of the ability of some PPI interfaces to 

accommodate small molecules by dynamic pocket formation could well aid in target 

selection.   

Lead to Candidate optimisation 

Once the binding site of a ligand moves beyond established hot-spots it can be 

difficult to derive significant potency from additional interactions, which can make 

optimisation to development compounds highly demanding.  The problem is most 

pronounced for cases where the binding surface is relatively flat and featureless. 

There is a tendency for MW and other properties to be outside conventional ‘drug-

like’ chemical space making the process of identifying a drug with good 

physicochemical and pharmacokinetic properties more difficult19.  Thus the drive for 

improved potency as MW increases must always be balanced against a subsequent 

potential decline in developability properties and selectivity.  Unlike kinases, for 

example, where ATP-competitive inhibitors must compete with high cellular 

concentrations of ATP, PPI inhibitors may not suffer from the same potency attrition 

in moving from biochemical screens into cell studies, depending upon the exact 

cellular concentration of the partnering proteins.  It remains to be seen whether PPI 

inhibitors in general can afford to be less potent, at the advantage of maintaining 

favourable physicochemical properties. Table 2 shows the examples of small-

molecule development candidates identified against PPIs known to the authors and 

that have entries on www.clinicaltrial.gov. 

 

Examples of the different classes of PPI 

Globular–helical peptide – discontinuous epitope 

Bcl-2 family–BH3 domain  

The Bcl-2 family of proteins are pivotal in the regulation of cell death through control 

of the integrity of the outer mitochondrial membrane. Pro-apoptotic Bcl-2 family 
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proteins such as Bak and Bax play a role in causing apoptosis. The effect of these 

proteins is blocked when they are sequestered by anti-apoptotic binding partners such 

as Bcl-2 and Bcl-xL. Small molecules which disrupt this interaction, by binding to the 

anti-apoptotic Bcl-2 family proteins, have been designed to induce apoptosis of 

cancer cells97. 

Structurally, the pro-apoptotic proteins possess a number of BH3 domains containing 

an α-helical motif that drives binding to the anti-apoptotic family members through 

predominantly hydrophobic interactions. In each case a critical 4-turn α-helical 

portion of the BH3 domain on the pro-apoptotic protein binds in an extended 

hydrophobic groove, of length around 20 Å, on the surface of its binding partner 

(figure 3, A, B). Led by Abbott laboratories, development of small molecule 

inhibitors over the last two decades has resulted in three molecules progressing to the 

clinic98.  These inhibitors bind to the globular Bcl-2 family proteins and mimic the α-

helical BH3 domain. 

NMR solution structures and X-ray crystal structures of Bcl-xL with many peptide 

and small molecule ligands have been described99-105.  Analysis of these structures has 

revealed significant Bcl-xL backbone flexibility, dependent on the binding partner.  

Early virtual-screening based approaches, with no consideration of protein surface 

flexibility, yielded flat, rigid compounds of limited affinity106-108.  A more refined 

approach resulted in identification of moderately potent small molecules that could 

provide interesting starting points for future elaboration although no progression has 

been published109. 

The elongated, discontinuous α-helical nature of the BH3 peptide partners has 

inspired the design of secondary structure mimetics110 such as terephthalamide-based 

structures111, 112. Chemically “stapling” BH3 peptides has resulted in highly specific, 

biologically-active inhibitors of both the Bcl-xL and Mcl-1 interactions73, 113, 114.  

Despite potential hydrolytic liabilities, following iv dosing, a stapled BID BH3 

peptide has exhibited activity in xenograft studies113. 

In common with other globular protein–α-helix PPIs, a number of high-throughput 

screens have been reported, including cases leading to promising hits with MW <500 

and low µM IC50 values in vitro115, 116.  A group at BMS obtained co-crystal structures 
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of their leads and subsequent optimisation resulted in low nM inhibitors of Bcl-2–Bim 

and Bcl-xL–Bim in biochemical assays; although their relatively high MW resulted in 

low aqueous solubility and limited cellular potency115. 

The Wang group (University of Michigan, Ann Arbor) and others have primarily used 

structure-based virtual screening to identify small molecule potent Bcl-2 family 

inhibitors: YC137117, TW-37118 and compound 21119. Meanwhile Fesik (Abbott 

laboratories) has used 15N HSQC protein-NMR to drive a fragment screening and 

linking strategy, followed by extensive optimisation guided by further NMR work. 

This led to the orally-bioavailable inhibitor 1 (navitoclax, ABT-263) that is currently 

in a number of phase 2 clinical trials for the treatment of a variety of cancers (figure 

3, C and D).120 

Subsequently, “pan-inhibition” of the Bcl-2 family proteins was shown to result in 

mechanism-specific toxicity (thrombocytopenia); specifically attributed to binding to 

Bcl-xL.  To circumvent this toxicity, re-optimisation based on compound 1 (ABT-

263) produced sub-nanomolar Bcl-2 binder 2 (venetoclax, ABT-199) with 3 orders of 

magnitude selectivity over Bcl-xL and Bcl-w98.  Selectivity was achieved by 

introducing a new polar interaction based on the observation of a crystallisation 

artefact in which the tryptophan side chain of a Bcl-2 crystal-packing mate formed a 

hydrogen bond with Asp103 of an adjacent Bcl-2, which is a Glu residue in Bcl-xL. 

Thus an indole moiety was incorporated into the scaffold of 1 (ABT-263) (Figure 3, 

D), recapitulating the interaction with Asp103 and leading to selectivity over Bcl-xL.  

Bcl-2-selective 2 (venetoclax, ABT-199) has now also progressed to the clinic as a 

combination therapy and is currently under evaluation in phase 3 for chronic 

lymphocytic leukemia (www.clinicaltrials.gov). Since the Abbott work, further 

examples of structure-guided discovery leading to potent Bcl-2 family inhibitors by 

merging newly identified groups with elements of the Abbott structures have been 

reported121, 122. 

Discussion 

The Bcl-2 protein is flexible and has three hot-spot pockets, leading to high molecular 

weight inhibitors and potentially poor developability properties. This is a good 

example of how identification of additional binding sites can be achieved by 
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conducting a second fragment screen in the presence of hit fragments from an earlier 

screen. Notably, in this case selectivity was required over a number of structurally-

similar PPIs, despite similarities of the α-helix binding grooves of the Bcl-2 family 

members, it has proved possible to engineer selectivity for Bcl-2 over Bcl-xL.  

 

Looking across the broader set of globular–helical peptide PPIs (table 1) a wide range 

of approaches for discovering leads have been used, with fragment-, lead- and natural 

product-screening, and peptidomimetic strategies all bearing fruit. Notably, the much 

studied MDM2–p53 interaction has proved less amenable to fragment screening than 

the Bcl-2 family, but HTS and peptidomimetic approaches have been successful123.  

Structurally, the peptides and peptidomimetics have been based on amino acid and 

non-amino acid oligomers as well as stapled peptides (figure 2, Ai and iii). In addition 

to these ‘oligomeric’ structures, there has been considerable success using non-

oligomeric scaffolds mimicking the orientation of the side-chains present on a helix. 

These may either be linear scaffolds (figure 2, Aii), as in the Bcl2 binders described 

above, or compact cores (figure 2, Aiv), as for the MDM2–p53 inhibitors124.  

Globular–peptide - continuous epitope 

XIAP-SMAC 

Caspase-9 is a cysteine-dependent protease that plays a vital role in apoptosis.  

Binding of the BIR3 domain of XIAP (X-linked Inhibitor of Apoptosis Protein) to 

Caspase-9 causes inhibition of Caspase-9 activity, preventing apoptosis and hence 

allowing tumour cell survival.  Similarly, Caspases 3 and 7 are inhibited through 

binding to the BIR2 domain of XIAP.  A small molecule that inhibits this interaction 

is of interest in promoting apoptosis in cancer cells.  Caspase-9 binds XIAP with an 

N-terminal continuous-epitope tetrapeptide motif (ATPF) that accesses a hydrophobic 

groove on the BIR3 domain of XIAP (figure 4, A, B).  Interestingly, an endogenous 

protein inhibitor of the XIAP–Caspase-9 interaction exists in the form of SMAC 

(Second Mitochondria-Derived Activator of Caspase, also known as DIABLO), 

which operates by binding and sequestering XIAP, via a similar binding motif, 

tetrapeptide AVPI. This utilises the same binding groove as Caspase-9125.  It is 
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thought that the BIR2 domain of XIAP also interacts with another molecule of SMAC 

to form a 1:2 complex via the same tetrapeptide motif.126  In addition, XIAP is 

member of a family of Inhibitor of Apoptosis Proteins (IAPs), including c-IAP1, c-

IAP2, Livin and Survinin, which also interact with SMAC through highly conserved 

BIR domains.  Therefore small molecules that bind to the BIR3 domain of XIAP at 

the SMAC binding site usually bind to other IAPs as well as XIAP.    

 

The tetra-peptide AVPI derived from SMAC, binds XIAP with a KD of 0.58 µM127 

and so provides a potential starting point for small molecule development, leading to 

optimised inhibitors such as compound 3 (figure 4C and D).  Impressively, single 

digit nanomolar affinity was achieved for some of the compounds and cytotoxicity 

against several human cell lines with concomitant increase in Caspase activity was 

demonstrated, as well as inhibition of tumour growth in a mouse xenograft model128.  

Various strategies have been employed to impose a conformational constraint on the 

peptide by building a bicyclic ring system, fusing the proline with the analogous 

position of the neighbouring valine129, 130.  A representative molecule 4 (SMAC037) 

is shown (figure 4, D).  In general, conformational constraint of a peptide has the 

potential benefits of increasing potency through reducing the entropic barriers to 

binding and interaction of the constraining elements with the protein itself.   

Dömling and co-workers have reported a novel strategy to identify inhibitors of the 

XIAP–SMAC interaction131.  The approach consists of identifying an ‘anchoring’ 

residue from the SMAC interaction motif, in this case the alanine of AVPI.  Virtual 

libraries were then constructed incorporating the alanine, and docking was performed.  

The compounds that scored best were then synthesised and tested for the ability to 

abrogate the protein interaction.  Although the compounds were only modestly potent 

(IC50 values 10-100 µM) as compared to peptide mimetics, the strategy represents an 

interesting methodology to generate novel scaffolds.   

Pellechia et al. have applied fragment-based methods to XIAP in an effort to generate 

compounds from the peptide with improved drug-like properties132.  Similar to 

Dömling’s ‘anchoring’ approach, libraries based upon alanine were screened virtually 

and selected compounds were tested for binding.  In this case, 2D NMR spectroscopy 

was employed to identify small, weakly binding fragments.  Through inspection of 



 18 

the structure with AVPI and further library synthesis, a hit fragment was elaborated to 

give a compound with a KD of 2.5 uM, with superior human plasma stability and 

permeability compared to the AVPI peptide. 

The observation that SMAC must bind to both the BIR3 and the BIR2 domain of 

XIAP to effectively disrupt XIAP-mediated caspase inhibition has more recently led 

to the development of bivalent ligands, designed to bind BIR3 and BIR2 by linking 

together two identical monovalent peptide mimetics.  In some cases, such as SM-164, 

the bivalent analogue of monovalent ligand SM-122, an approximately 1,000-fold 

improvement in effect on inducing apoptosis in tumour cells is observed.133  

Birinapant (TL32711) from Tetralogics Pharma is another bivalent ligand, but 

dispenses with a linker, with two monovalent ligands directly attached to each other 

through an indole.  Birinapant is currently in phase 2 trials, as is LCL-161 (a 

monovalent ligand) from Novartis.  Several other monovalent ligands are in phase 1 

such as AT-406 and GDC-0152 (Table 2). 

The majority of XIAP inhibitors are not selective for XIAP over other members of the 

IAP family, in particular c-IAP1 and c-IAP2.  In addition, within the domains of 

XIAP itself, inhibitors tend to bind to both the BIR2 and BIR3 domain.  Recently 

however, inhibition of the BIR domains of c-IAP1 has been linked with the 

undesirable production of TNF134, prompting efforts to design selective inhibitors 

which particularly target the BIR2 domain of XIAP and not the BIR domains of c-

IAP1 and c-IAP2.135, 136  Such inhibitors are anticipated to have different 

pharmacodynamics profiles to the less selective compounds. 

Keap1–Nrf2 

Nrf2 (Nuclear factor-erythroid 2-related factor 2) is a transcription factor that 

plays a key role in protecting cells against the damage caused by carcinogens, 

oxidants and other toxic chemicals through the induction of detoxifying enzymes. 

Keap1 (Kelch-like ECH associating protein 1) inhibits the activity of Nrf2 by 

facilitating protein degradation through ubiquitination.  Oxidative stress is 

detected by Keap1 through modification of reactive cysteine residues leading to 

the release of Nrf2, reduction of ubiquitination and thus to up-regulation of key 

cytoprotective proteins137.  Inhibition of this regulatory process has been proposed 
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to have potential therapeutic benefit in a number of diseases including cancer, 

diabetes, atherosclerosis, Alzheimer’s disease and arthritis.  

Nrf2 possesses two binding motifs that drive its interaction with Keap1: the high 

affinity ETGE (DxETGE) unit and the more weakly-interacting DLG 

(LxxQDxDLG) unit. It has been proposed that a 2:1 complex in which a Keap1 

homodimer binds to a single molecule of Nrf2 controls the ubiquitination of Nrf2 

and thus increases Nrf2 levels at times of oxidative stress. The suggested 

mechanism for this regulation is that the high affinity ETGE binding unit acts as a 

hinge whilst the low affinity DLG behaves as a latch: at times of oxidative stress 

conformational changes in Keap1 cause dissociation of the DLG ‘latch’ leading to 

conformational changes in the Nrf2 protein that reduce the extent of Nrf2 

ubiquitination thus increasing overall protein levels138. 

The X-ray crystal structure of the murine Keap1 DGR-CRT domain (mKeap1-

DC) revealed a striking six-bladed beta-propeller structure, with each blade 

composed of four anti-parallel β-sheets137. Further structures showing peptides 

derived from Nrf2, containing the high affinity ETGE motif, bound to mKeap1-

DC have been reported137, 139. A second crystal structure of the DLG motif 

revealed a very similar binding mode 138. 

A number of efforts to identify inhibitors of the Keap1-Nrf2 PPI have been 

reported. It has been shown that the shortest ETGE containing peptide to give 

similar affinity to Keap1 is an acetylated 9-mer with a KD of 23 nM140.  The SAR 

of a series of heptapeptides has been explored with the most potent showing sub-

micromolar IC50 values for disruption of the PPI141, 142.  Two high throughput 

screens for inhibitors of the Keap1-Nrf2 PPI have been reported143, 144. 

Symmetrical inhibitor 5 was reported to have an IC50 of 2.7 μM and to show 

evidence of target engagement in cells. A crystal structure of 5 bound to Kelch-

DC central domain of Keap1 showed that it accesses the same binding site as the 

ETGE and DLG motifs (figure 5, C, D). Exploring this structure, Jiang et al. noted 

that 5 lacks the polar interactions made by the glutamic acid residues in the ETGE 

motif. Based on this observation they designed the diacid 6 that was found to have 

a much-improved KD of 9.9 nM as determined by biolayer interferometry, and 

activity of 29 nM in an FP assay (figure 5, D). This compound was also shown to 
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have activity in a number of cell-based assays145.  Other small molecule leads have 

been identified by a virtual screening approaches utilising both a pharmacophore-

based search and docking146, 147.   

Discussion 

Many inhibitors of PPIs with a short continuous epitope can be traced back to 

peptides and peptidomimetic leads based on the binding unit (figure 2, B, v).  There is 

a fundamental difference in the nature of peptidomimetics in this case and the helix 

mimetics discussed in the previous sections.  

As with the XIAP–caspase 9 interaction, commonly, a linear peptide makes a 

sequence of hydrogen bonds with the protein surface via the peptide backbone, and 

also positions hydrophobic groups that interact in surface pockets.  There may be no 

net energetic benefit in displacing surface waters from hydrated interfaces to replace 

them with interactions with the epitope backbone.  However, if these surface waters 

are displaced by a small molecule and the hydrogen bond is not re-made, it is likely 

an enthalpic penalty will result.  The challenge is to design a small molecule that 

bridges hydrophobic hot-spots, with a linker that will satisfy these hydrogen bonds.  It 

can be difficult to design a more efficient linker to achieve this than the peptide unit. 

α-Helical peptides cannot interact in this manner with a protein surface due to the 

internal back hydrogen bonding of helices, and in general non-peptide small 

molecules have not achieved the same levels of potency as peptidic compounds. 

Sensible strategies to increase potency include constraint of the peptide by 

introduction of cyclic amino acids and bridges between residues. The nature of the 

residues in a short peptide sequence will have significant bearing on the ease of 

developing potent inhibitors and endowing these with good ADMET properties.  

The PDZ domain is a conserved peptide binding motif which has been identified in 

>140 proteins. Typically this globular motif binds to a short C-terminal peptide in 

which the terminal four amino acids are of particular importance. Ligands are 

typically negatively-charged, forming an interaction with a Lys or Arg residue in the 

PDZ domain. Extensive studies with peptides have been reported and also some initial 

results using virtual screening, lead-like molecule and fragment screening148. The 

integrins are another important class of PPI featuring a continuous epitope, in this 
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case the need to mimic a zwitterion has made the development of compounds with 

good developability properties challenging149. 

In the case of Keap1–Nrf2 the β-propeller structure makes this structurally very 

different from the above interactions; the presence of concave binding surface 

with a number of charged residues may be responsible for the notable successes 

screening against this target. Notably, WDR5–MLL represents another example of 

a peptide binding into the hole in a β-propeller150-152, it remains to be seen whether 

other related PPIs may be discovered.  

 

Globular-globular discontinuous epitope 

IL-2–IL-2R 

The cytokine IL-2 (interleukin-2) and its associated cell surface receptors, IL-2Rα 

(p55), IL-2Rβ (p75) and IL-2Rγ (p64, γc) play a critical role in the immune response. 

IL-2 and IL-2Rα are expressed by activated T-cells, extracellular IL-2 binds to IL-

2Rα and the resultant complex then joins with the β- and γ-subunits triggering an 

immune response. Antibodies that act as antagonists of the interaction between the 

receptor IL-2Rα, and IL-2 have been shown to be clinically effective as 

immunosuppressive agents, providing target validation for this as a therapeutic 

approach and supporting efforts to develop a small molecule inhibitor28, 153. 

Compared to most other PPIs targeted in drug discovery, this interaction is arguably a 

true globular-globular interaction. Analysis of the binding surface of IL-2 reveals 

hydrophobic patches surrounded by polar groups28.  It is proposed that desolvation of 

these patches drives binding of the proteins.  

A number of small molecule inhibitors have been reported, these bind to the cytokine 

IL-2 and thus mimic residues from IL-2Rα, which are derived from various non-

continuous structural elements in contrast to the previous examples in which the 

inhibitors mimicked a single structural element. A group at Roche attempted to design 

a small molecule capable of acting as an antagonist of IL-2Rα leading to the 

discovery of compound 7 that inhibited IL-2–IL-2Rα binding with an IC50 of 3 μM 
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(figure 6, D). Subsequent 15N HSQC protein NMR studies led to the surprising 

discovery that 7 binds to IL-2 rather than, as expected, the corresponding receptor154.  

Wells and co-workers at Sunesis solved X-ray structures of 7 bound to IL-2 and of the 

apo cytokine155.  Comparison of these two structures revealed that the binding site for 

7 has a rigid region into which the polar head of 7 binds and an adaptive region 

forming a recessed channel used for binding the lipophilic biarylacetylene unit.  

Sunesis have reported a number of IL-2 ligands. A conventional structure-based 

design approach led them to a series of guanidines, however they found that potency 

reached a low micromolar plateau156, 157.  On the other hand, a fragment-tethering 

strategy proved more fruitful. A set of IL-2 mutants in which residues at the perimeter 

of the IL-2 “hot-spot” were converted to cysteine was screened against a library of 

7,000 disulfide-containing fragments. This identified a region, accessible from two 

mutant cysteines, with a preference for binding small aromatic carboxylic acids156 that 

were subsequently shown by crystallography to bind at the end of the hydrophobic 

channel155.  Overlaying the crystal structure of their lead with the modeled fragments 

led to the design of hybrid molecules - the most potent of which 8 (SP4206) has a KD 

for IL-2 of 100 nM as determined by SPR, and an IC50 of 60 nM for inhibition of the 

IL-2–IL-2Rα interaction156.  In further tethering studies, Sunesis have explored the 

impact of simultaneous binding of the Roche compound 7 and tethered fragments, 

finding examples of both cooperativity and competitive binding associated with the 

complex behaviour of the flexible regions of the IL-2 protein, moreover this behavior 

was found to be associated with binding into a further cryptic pocket in the adaptive 

region158.  

 

Discussion 

In the case of globular–globular PPIs, the interaction does not naturally divide into a 

target-protein to which inhibitors will bind and a displaced peptide, as demonstrated 

by the ambiguity regarding the target in the initial Roche work. The lack of a 

continuous epitope precludes rational peptidomimetic type approaches and makes 

screening and optimisation particularly formidable. Roche benefited from serendipity 

and Sunesis from the tight binding afforded by the tethering approach. There have 
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been relatively few successful examples of hit identification, and the development of 

hits into potential drugs seems particularly challenging. At this stage it is not clear 

whether any general strategies towards developing inhibitors of these interactions 

exist. 

 

PPIs with an anchoring residue 

Bromodomains and other epigenetic readers. 

Epigenetics, the study of heritable changes not caused by alterations to the 

underlying DNA sequence, is currently an area of intense research159.  A key facet 

of epigenetic regulation is the acetylation of lysine residues or methylation of 

lysines and arginines. Such residues can be ‘read’ by using a structurally-distinct 

form of PPI. These ‘readers’ feature classes of structurally-related protein domains 

such as the bromodomains, which bind to acetylated lysine residues. Related 

reading domains that recognize other sequences include tudor domains, 

chromodomains, MBT domains, PWWP domains and PHD domains159. 

These PPIs represent a very different kind of target and a number of recent 

excellent reviews have documented this rapidly emerging area159, 160.  We limit 

ourselves to a number of comments. Firstly, the anchor residue provides a very 

specific focus for drug discovery efforts. Secondly, the domains bind to their 

modified histone partners with varying degrees of sequence specificity and often 

very weakly - 10-100 µM is not uncommon in the case of bromodomains. Finally, 

multiple related domains have been identified, for example there are proposed to 

be 61 bromodomains161.  Thus drug discovery in this area bears some similarity to 

the development of kinase inhibitors in that the protein targets have a common 

binding motif surrounded by sub-pockets that may confer the potential for 

selectivity.  In a study by Filippakopoulos et al., a systematic screen of 33 

bromodomains against an array of singly acetylated lysines in histone peptides 

revealed a variety of specificities.161  Whilst some acetylation marks were almost 

ubiquitously recognized by all the bromodomains studied, other lysine 

acetylations were bound specifically by only a small number of bromodomains, 



 24 

indicating a recognition event influenced by the sequence of nearby histone-

peptide residues. In particular, the effect of neighbouring trimethylated lysine, 

acetylated lysine, phospho-threonine and phospho-serine was also studied which 

highlighted the importance of post-translational modification of adjacent residues 

on the anchor-residue recognition process.  Similarly, some bromodomains were 

found to bind selectively to only a small number of acetyl lysines whilst others are 

more promiscuous. This clearly has consequences for inhibitor design and 

reported compounds have varying selectivity; inhibitors can show reasonable 

selectivity between families but reduced selectivity between closely related 

bromodomains.162 A number of bromodomain inhibitors have entered the clinic 

(table 2), exemplified by compound 9 (I-BET762, GSK525762) (Figure 7).163 

Discussion 

Epigenetic reader domains are not unique in employing a modified anchor residue, 

(table 1) for example the interaction between farnesylated KRAS and PDEδ has 

recently been the subject of successful small molecule inhibitor development164.  

SH2 domains bind to short peptide units containing a phosphorylated tyrosine. 

Efforts at discovery of small molecules blocking the interaction of SH2 domains 

with their client proteins have had some success but in this case the strong 

negative charge of the anchoring group and the peptidic nature of the scaffolds has 

resulted in small molecule mimics with undesirable physicochemical properties27. 

Overall, two main strategies have been employed to identify hits against PPIs 

featuring anchor residues: fragment-based drug discovery and peptide mimetics. 

FBDD seems ideally suited to identifying fragment hits binding into the ‘anchor-

pocket’ – this has proved particularly useful against the bromodomains. Where the 

anchoring residue forms part of a short continuous epitope, for example in the 

SH2 domains, leads with obvious peptidic elements are common. 
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Outlook  

Over the past 20 years there has been a clear increase in research efforts towards 

the development of PPI inhibitors. This has led to some notable successes using an 

array of different strategies and to the first PPI inhibitors entering the clinic. It is 

clear from this work that careful structural analysis of a PPI allows an assessment 

of both druggability and of the most appropriate screening and design approaches. 

The success stories to date are characterised by a willingness to adopt new 

approaches such as fragment-based discovery, tethering, NMR and biophysical 

screening and novel design strategies. It is notable that relatively few targets have 

progressed as far as the clinic and that a number of the clinical candidates fall 

outside normal drug-like space suggesting that the demands of optimising initial 

leads to development compounds are not trivial. 

Over the coming decade, PPIs have the potential to enter into the drug discovery 

mainstream. A greater engagement from groups in large pharmaceutical 

organisations with the capacity to drive the later stages of lead-optimisation for 

these demanding targets should help to bring a wider range of targets to the clinic. 

This will require a shift away from a ‘one-size fits all’ R&D mind-set that has the 

potential to reject targets that do not fall into a narrow definition of tractable. The 

recent move within industry to smaller, more innovative, nimble research units 

should encourage the risk taking and innovation required to make this happen. 

Moreover, the increasing focus that academia is placing on drug discovery 

research should allow a broader range of drug discovery targets to be explored. 

In both academia and industry an increased focus on PPI targets will require a 

strong commitment to structural biology and biophysics. From a medicinal 

chemistry perspective, whilst we recognise that ideally the properties of 

development compounds should meet Lipinski-like criteria this will likely prove 

incompatible with developing sufficiently potent inhibitors for some PPIs. In these 

cases improving our ability to discover developable compounds outside rule of 5 

chemical space is a key challenge for medicinal and computational chemists. 

Thus far, in common with many cutting edge areas of research it has been 

oncology that has benefited most from pioneering research efforts. In the future 
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we expect to see an increased focus on other important disease areas, although the 

challenges associated with some therapeutic areas – most notably CNS diseases, 

given the likely physicochemical properties of PPI inhibitors - are likely to be 

formidable. 

Overall, if the drug discovery community is able to step up to the challenge posed 

by PPIs there are tremendous opportunities to develop new approaches to the 

treatment of disease in this diverse and fascinating target class. 
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Figure 1. Structural classification of PPIs with cartoons representing the protein partners and 

examples in which globular peptides are represented by surfaces or cartoons and peptides 

by cartoons: (A) Interaction between two globular proteins with preformed surfaces. (B) 

Interaction between two globular proteins with an induced binding surface. (C) Interaction 

of a rigid globular protein with a peptide. (D) Interaction of a flexible globular protein with a 

peptide. (E) Interaction of two peptides. 
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Table 1. Further classification of globular-peptide and peptide-peptide PPIs with examples highlighted in bold and illustrated in surface and cartoon form.  

PPI Class Description   Examples (target–displaced) 

 

Example Structure  

Globular–helical 

peptide, discontinuous 

epitope. 

 

Helix with a discontinuous 

epitope binding into a groove.  

 

MDM2–p53 

BCL-XL–BAD/BAK 

ZipA–FtsZ 

S100B–p53 

β-catenin–Tcf3–Tcf4 

McL–BH3 

Sur-2–ESX 

 

 

 

Globular–Peptide, 

continuous epitope 

Continuous epitope on β-

sheet/strand and loops binding 

into surface with pockets.  

XIAP–SMAC 

HIV integrase–LEDGF 

Integrins 

RAD51–BRCA2 

PDZ domains 

NRP1–VEGF-A 

Menin–MLL 
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 Binding into pocket in a β-

propeller 

 

Keap1–Nrf2 

WDR5–MLL 

 

 

 

Globular-peptide, 

anchor residue. 

Peptide with anchor residue due 

to post-translational 

modification binding into a 

pocket. 

 

Bromodomains 

PDEδ–KRAS 

SH2 domains 

PLK1 PBD–peptide 

VHL–HIF1α 

 

 

 

Globular–Globular, 

discontinuous epitope 

Two proteins both presenting 

discontinuous epitopes 

 

IL2–IL2R 

TNFα–TNFα  

E2–E1  

 

 

Peptide-Peptide A pair of helices with an 

elongated binding interaction. 

 

Myc–Max 

NEMO–IKK 

Annexin II–P11 (S100A10) 

 
 

 

/
/
/ 
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Table 2 – PPI inhibitors known to the authors to have reached clinical development. 

Namea Developerb Target Therapeutic Area Phasec  

Navitoclax/ABT-263 (1) AbbVie BCl2 family Cancer Phase 2  

Venetoclax/ABT-199 (2) AbbVie BCl2 family Cancer Phase 3  

Obatoclax (CEP-41601, GX-015-070) Teva (Cephalon) BCl2 family Cancer Phase 3  

RG7112, RO5045337 Roche MDM2-p53 Cancer Phase 1  

RO5503781 Roche MDM2-p53 Cancer Phase 1  

AMG 232 Amgen MDM2-p53 Cancer Phase 2  

CGM097 Novartis MDM2-p53 Cancer Phase 1  

DS3032b Daiichi Sankyo MDM2-p53 Cancer Phase 1  

SAR405838 Sanofi/University Michigan MDM2-p53 Cancer Phase 1  

MK-8242 Merck MDM2-p53 Cancer Phase 1  

JNJ-26854165 J&J MDM2-p53 Cancer Phase 1  

Lifitegrast (SAR1118) Shire / SARcode Bioscience LFA-1/ICAM-1  Dry Eye Phase 3  

Tirofiban Merck αIIbβ3 Cardiovascular Approved  

Orbofiban Searle αIIbβ3 Cardiovascular Phase 3149  

Xemilofiban Searle αIIbβ3 Cardiovascular Phase 3149  

Sibrafiban Roche αIIbβ3 Cardiovascular Phase 3149  

BMS-587101 Bristol-Myers-Squibb αLβ2 Psoriasis Phase 2  

BIRT 2584 Boehringer Ingelheim αLβ2 Psoriasis Phase 2  

Valategrast Roche α4β1 Asthma Phase 2149  

IVL745 Sanofi-Aventis α4β1 Asthma Phase 2149  

Firategrast (SB-683699) GlaxoSmithKline α4β1 Multiple Sclerosis Phase 2  

AJM300 Ajinomoto α4β1 Ulcerative colitis Phase 2149  

JSM6427 Jerini α5β1 Macular degeneration Phase 1  

AT-406 Ascenta Therapeutics  IAP Cancer Phase 1  

GDC-0152 Roche / Genentech IAP Cancer Phase 1   

Birinapant (TL32711) Tetralogics Pharma IAP Cancer Phase 2  

LCL-161 Novartis IAP Cancer Phase 2  

AEG40826/HGS1029 Aegera/HGS IAP Cancer Phase 1  

GDC-0917 Roche / Genentech IAP Cancer Phase 1  

GSK525762 GSK Bromodomain family Cancer Phase 1d  

CPI-0610  Constellation Pharmaceuticals Bromodomain family Cancer Phase 1  

Ten-010  Tensha Therapeutics Bromodomain family Cancer Phase 1  

OTX015 Oncoethix Bromodomain family Cancer Phase 1  



 31 

RVX-208  Resverlogix Bromodomain family Cardiovascular Phase 2  

      

 
a. Names or registration numbers taken from www.clinicaltrials.gov. 

b. Key organisations involved in the development listed. 

c. Latest phase corresponds to that registered on www.clinicaltrials.gov unless alternative reference is provided. In some cases the phase may correspond to a trial which has 

not yet started or may have been withdrawn prior to dosing.4 

d.  www.gsk.com
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Figure 2: Strategies for developing peptidomimetics. (A) Mimicry of three hotspot residues 

of an α-helix can be achieved with (i) a linear oligomer with identical repeating units (ii) a 

linear molecule assembled from different units (iii) a “stapled” peptide and (iv) attachment 

of groups to a central scaffold.  Peptide backbone hydrogen bonds are indicated by red 

dashed lines.  (B) Mimicking the residues on a continuous epitope can be achieved with (v) a 

linear oligomer, which commonly must also make hydrogen bonds to the surface (red 

dashed lines). 
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Figure 3: (A) X-ray crystal structure of Bax BH3 peptide (blue cartoon) bound to Bcl-2 

(orange surface) pdb code:2xa0.  (B) Detail of this interaction with Bcl-2 shown as orange 

cartoon and key residues as sticks. Structural investigation and binding analysis of pro-

apoptotic BH3 domains has revealed the importance of 4 conserved hydrophobic residues 

(Leu59, Leu63, Ile66, Leu70) in binding to their protein partners 105, 165.  In addition the 

interaction of Bax with Bcl-2 displays a significant hydrophobic interaction with Met74165. 

Significant electrostatic interactions are also observed, with Asp68 from Bax forming a salt 

bridge with Arg146 from Bcl-2165.  (C) X-ray crystal structure of 1 (navitoclax, ABT-263) 

bound to Bcl-2 viewed from same orientation as B (pdb code:4lvt). Initial screening 

identified biaryl fragments that were found to bind in the location of the dominant hot-spot 

in the centre of the hydrophobic groove of Bcl-xL, occupied by Leu78 of Bak in the PPI.  A 

second fragment screen was carried out in the presence of a hit biaryl-fragment leading to 

identification of fragments binding at a proximal site occupied by Ile85 of Bak in the PPI.  



 34 

These two fragments were linked1 and NMR solution structures were then utilised to guide 

optimisation of the resultant compounds. In apo structures the groove is not well defined, 

but binding the small molecules induces structural changes that create large hydrophobic 

pockets.  These structural changes were not observed in complex with fragments but were 

induced when fragments were linked and elaborated.166  (D) Chemical structure of 

compounds 1 (navitoclax, ABT-263) and 2 (venetoclax, ABT-199). 
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Figure 4:  (A) Crystal structure of Caspase-9 (blue cartoon) bound to XIAP (orange surface) 

pdb code: 1nw9.  (B) Detail of this interaction with XIAP is shown as orange cartoon and key 

residues on XIAP and Caspase-9 as sticks. The proline ring of Caspase-9 hydrophobically 

packs against the side chain of Trp323, whilst the phenylalanine is buried in a surface pocket 

of XIAP formed from the hydrophobic sidechains of Leu292, Lys297 and Lys299.  The N-

terminal alanine of Caspase-9 interacts with the sidechain of Trp310.  Hydrophilic 

interactions are important too; the N-terminus forms a salt-bridge with Glu314, and the 

backbone of Caspase-9 forms hydrogen-bonding interactions with backbone and sidechains 

of XIAP.  (C) X-ray structure of small molecule 3 bound to XIAP viewed from same orientation 

as B (pdb code: 1tft) 128 Fesik et al. have reported a series of compounds based upon the 

AVPFY penta-peptide, which binds XIAP with a KD of 60 nM128.  Through an iterative process 

of library screening and design, a series of capped tripeptide analogues were synthesised.  

The NMR structure of the BIR3 domain of XIAP bound to the AVPI peptide identified two 
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hydrophobic areas on the protein surface to grow towards; Trp323 and Tyr324 from the 4-

position of the proline ring and from the C-terminus onto the hydrophobic side-chains of 

Lys297 and Lys299.  Although there is some contact between the native peptides and these 

regions, they are more fully exploited with the small molecules, such as compound 3 (D) 

Chemical-structure of inhibitors 3128 and 4 (SMAC037).130 
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Figure 5: (A) Crystal structure of Nrf2 high affinity “ETGE” peptide (blue cartoon) bound to 

Keap1 (orange surface and cartoon) pdb code: 2flu. The propeller has a hydrophobic inner 

cavity containing a well-ordered water network and possessing a number of basic Arg 

residues. The peptide adopts a tight 4-residue β-hairpin, binding into the hole generated at 

the centre of the propeller; (B) Detail of same interaction in A with Keap1 shown as orange 

cartoon and important residues on Keap1 and Nrf2 as sticks, of particular note are key 

interactions between the two glutamic acid residues, at either end of the ETGE unit, and the 

Arg residues in the Keap1 binding site. The structure is consistent with results of alanine 

scanning experiments with the Keap1 protein139. (C) A screen of the Evotec Lead Discovery 

Library using a homogeneous confocal fluorescence anisotropy assay (two-dimensional 

fluorescence intensity distribution analysis, 2D-FIDA) identified 18 validated hits144, most 

notably 5 shown as an X-ray structure bound to Keap1 viewed from same orientation as B 

(pdb code: 4iqk). Compound 5 makes four π-π stacking interactions, three with tyrosine 
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residues and the fourth with Arg415: the unsubstituted ring of the naphthalene is inserted 

deep into the polar pocket in order to make this latter interaction (D) Chemical structure of 

compound 5 and further developed inhibitor 6. 
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Figure 6:  (A) Crystal structure of IL-2Rα  (blue cartoon and transparent surface) bound to IL-

2 (orange surface) pdb code: 1z92.  (B) Detail of this interaction with IL-2 shown as orange 

cartoon and key residues on IL-2 and IL-2Rα as sticks. Labelled residues of IL-2 are indicated. 

Overall 20 IL-2 and 21 IL-2Rα residues interact to bury 1868 Å2 
. In one patch, Tyr45 on IL-2 

packs into a pocket formed by the methylenes of IL-2Rα Arg35 and Arg36. In a second patch 

Phe42 and Leu72 on IL-2 insert into a pocket on IL-2Rα assembled from Leu42, Tyr43 and 

Met25. This latter patch is surrounded by salt-bridges and hydrogen bonds and has been 

proposed to be the most important energetically28.  The residues highlighted above were 

among those identified as important for binding from earlier mutation studies carried out on 

both IL-2Rα167 and IL-2168. (C) X-ray structure of Sunesis compound 8 (SP4206) bound to IL-2 

viewed from same orientation as B (pdb code: 1py2). Comparison of the binding of 8 

(SP4206) and IL-2Rα by X-ray crystallography reveals conformational changes, with IL-2Rα 

covering approximately twice the area, making around three times as many heavy atom 

contacts, and being 2- to 4-fold less ligand efficient than 8 (SP4206)169. From an electrostatic 
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perspective, both IL-2Rα and 8 (SP4206) show a distinctive zwitterionic character. The small 

molecules showing a much smaller electrostatic field due to the presence of a much 

simplified network of charge-charge interactions. An experiment, in which the residues on 

IL-2 known to contact the ligand were individually mutated to alanine, demonstrated that 

the same IL-2 residues are most important for the affinity of 8 (SP4206) and IL-2Rα.  (D) 

Chemical structure of Roche compound 7 and Sunesis compound 8 (SP4206). 



 41 

 

Figure 7:  (A) Crystal structure of BRD4 bromodomain 1 bound to a diacetylated histone 4 

peptide (pdb code: 3uvw).  In addition to the acetyl lysine recognition site, two important 

structural features of the BET family of bromodomains are indicated; the WPF shelf and the 

ZA channel.  In BRD4, the WPF shelf comprises three stacked amino acid side chains; Trp81, 

Pro82 and Phe83.  The ZA channel is a narrow hydrophobic region that joins the Z and A 

helices.  BET inhibitors typically interact with these hydrophobic areas to drive increased 

potency. (B) Detail of acetylated lysine of histone 4 interacting with BRD4 (pdb code: 3uvw), 

overlaid with compound 9 (I-BET762, GSK525762 pale green carbons, pdb code: 3p5o), 

demonstrating molecular mimicry of the key interaction.163  The acetyl lysine is recognised 

by a tunnel lined with hydrophobic side chains, including Leu94, Ile146, Tyr139 and Tyr97, 

with bound waters at the base.  The acetyl group interacts with the side chain of Tyr97 via a 

water molecule and the side chain of Asn140.  (C) Crystal structure of compound 9 (I-

BET762, GSK525762) bound to BRD4 bromodomain 1.   The side chain of Trp81 forms the 

edge of the binding pocket, packing against the para-chloro benzene group of 9 as part of 
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the WPF shelf.  The para-methoxy benzene group is directed towards the ZA channel.  (D) 

Chemical structure of inhibitor 9 (I-BET762, GSK525762). 
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Glossary 

 

Globular protein - literally a protein whose peptide chains are folded to form a 

broadly-spherical shape, often extended to mean a non-membrane-bound protein in 

which multiple regions of the peptide chain combine to give a defined tertiary 

structure with one or more binding or active sites. 

 

Hot-spot – a region of a binding surface contributing a disproportionately large 

amount to the interaction-energy of a pair of proteins or a protein and a ligand. 

 

Alanine-scanning – a set of experiments in which amino acids in a protein are 

sequentially mutated to alanine in order to estimate the contribution of the individual 

side chains to the binding energy of a protein-protein interaction. 

 

Discontinuous epitope – a binding site in which amino acids that occur in different 

regions of the protein sequence combine to interact with the partner protein, these 

might be periodic side-chains on one face of a helix or residues from a group of 

neighbouring chains in a globular protein. 

 

Intrinsically disordered protein/peptide – a protein or peptide lacking a fixed three-

dimensional structure when in a monomeric state. Such species may adopt a more 

ordered structure when interacting with other proteins or ligands.  

 

Box – Biophysical methods 

 

Due to the low affinity of fragment hits for their protein targets structural or 

biophysical methods are often used to detect these interactions. The most important 

methods of detection include: 

 

Thermal shift (TS)54– the stabilization associated with binding of a ligand to a 

protein leads to an increase in the unfolding-temperature of the protein that can be 

detected by heating the protein in the presence of a dye sensitive to protein-

denaturation. 
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Surface plasmon resonance (SPR)55– A method which detects changes in the 

refractive index of a surface layer caused by binding events, enabling the 

measurement of ligand affinities and in some cases the determination of binding 

kinetics. 

 

Ligand- or protein-based NMR56– ligand binding is detected through changes in the 

nuclear magnetic resonance signals of either the ligand or the protein respectively. 

 

X-ray crystallography57 is used to determine the structure of ligands bound to 

proteins; most commonly preformed crystals of the protein are soaked in a high-

concentration solution of the ligand prior to data collection. 

 

Isothermal titration calorimetry – the heat associated with the binding of a ligand to 

the protein is measured and used to determine both the dissociation constant and 

potentially the thermodynamics of binding. 

 

Druggability – an assessment of the ease with which a drug can be developed to 

interact with a given protein target. In this case a relatively narrow meaning, namely 

the ease of generating a small molecule with reasonable affinity, is implied.  

 

Pharmacophore – the features in a ligand responsible for its binding to a protein, 

reduced to an abstract representation lacking an underlying framework of bonds or 

rings.  

 

Apoptosis – programmed cell death, controlled by a complex network of interactions 

including PPIs. 

 

Ubiquitination – the attachment of a small protein, ubiquitin, onto another protein 

often as a prelude to controlled degradation of the labeled protein. 

 

ADMET – Absorption, Distribution, Metabolism, Excretion and Toxicity - key 

properties of a potential drug depending in part on the physicochemical properties of a 

molecule. 
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PDZ domain – a protein domain containing a series of Gly-Leu-Gly-Phe repeating 

units. Named after the post-synaptic density-95 protein (PSD-95), the Drosophilia 

discs large tumour suppressor (Dlg-A), and the tight-junction associated protein 

Zonula occludens-1 (ZO-1).148  
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Online summary 

- Protein-protein interactions are increasingly being targeted by drug discovery 

groups and there exists great scope for therapeutic modulation of this target 

class in disease. 

- The array of structurally interacting elements by which proteins interact with 

one another is wide and resists clear-cut classification.  However broad 

divisions can be made by grouping interactions based upon the globular or 

peptidic nature of the proteins. 

- Some strategies for developing inhibitors against a given PPI may have more 

traction against certain classes of PPIs than others; for example fragment 

based drug discovery has shown particular promise in targeting bromodomains 

and peptide mimetics in mimicking beta-strands. 

- We examine case studies representative of the various structural-types of PPI 

and discuss lessons learnt from each. 

- A summary of current status of inhibitors in clinical trials against different 

targets is presented. 

 

 


