82 research outputs found

    Internet search data showed increased interest in supplementary online education during the COVID-19 pandemic, with females showing a greater increase

    Get PDF
    The COVID-19 pandemic has led to tremendous disruptions in people’s everyday activities, including the pursuit of education. Internet search data may provide insights into potential audiences’ interest in online education. Using Internet search data, we examined the impact of COVID-19 on people’s interest in supplementary online education in the US over nine months (10/14/2019–07/19/2020). We found there was increased interest in supplementary online education after WHO announced COVID-19 as a pandemic, with a greater increase among females than males. We found that the increased interest in online education persisted after the stay-at-home orders were lifted; in addition, we identified concerns over unemployment as a key variable that significantly explained the variance in the interest in online education, even after controlling for COVID cases and deaths. Policymakers and online education platforms may take advantage of people’s, especially women’s increased interest in online education when designing policies or marketing mix

    Integrating image caption information into biomedical document classification in support of biocuration.

    Get PDF
    Gathering information from the scientific literature is essential for biomedical research, as much knowledge is conveyed through publications. However, the large and rapidly increasing publication rate makes it impractical for researchers to quickly identify all and only those documents related to their interest. As such, automated biomedical document classification attracts much interest. Such classification is critical in the curation of biological databases, because biocurators must scan through a vast number of articles to identify pertinent information within documents most relevant to the database. This is a slow, labor-intensive process that can benefit from effective automation. We present a document classification scheme aiming to identify papers containing information relevant to a specific topic, among a large collection of articles, for supporting the biocuration classification task. Our framework is based on a meta-classification scheme we have introduced before; here we incorporate into it features gathered from figure captions, in addition to those obtained from titles and abstracts. We trained and tested our classifier over a large imbalanced dataset, originally curated by the Gene Expression Database (GXD). GXD collects all the gene expression information in the Mouse Genome Informatics (MGI) resource. As part of the MGI literature classification pipeline, GXD curators identify MGI-selected papers that are relevant for GXD. The dataset consists of ~60 000 documents (5469 labeled as relevant; 52 866 as irrelevant), gathered throughout 2012-2016, in which each document is represented by the text of its title, abstract and figure captions. Our classifier attains precision 0.698, recall 0.784, f-measure 0.738 and Matthews correlation coefficient 0.711, demonstrating that the proposed framework effectively addresses the high imbalance in the GXD classification task. Moreover, our classifier\u27s performance is significantly improved by utilizing information from image captions compared to using titles and abstracts alone; this observation clearly demonstrates that image captions provide substantial information for supporting biomedical document classification and curation. Database URL

    Utilizing image and caption information for biomedical document classification.

    Get PDF
    MOTIVATION: Biomedical research findings are typically disseminated through publications. To simplify access to domain-specific knowledge while supporting the research community, several biomedical databases devote significant effort to manual curation of the literature-a labor intensive process. The first step toward biocuration requires identifying articles relevant to the specific area on which the database focuses. Thus, automatically identifying publications relevant to a specific topic within a large volume of publications is an important task toward expediting the biocuration process and, in turn, biomedical research. Current methods focus on textual contents, typically extracted from the title-and-abstract. Notably, images and captions are often used in publications to convey pivotal evidence about processes, experiments and results. RESULTS: We present a new document classification scheme, using both image and caption information, in addition to titles-and-abstracts. To use the image information, we introduce a new image representation, namely Figure-word, based on class labels of subfigures. We use word embeddings for representing captions and titles-and-abstracts. To utilize all three types of information, we introduce two information integration methods. The first combines Figure-words and textual features obtained from captions and titles-and-abstracts into a single larger vector for document representation; the second employs a meta-classification scheme. Our experiments and results demonstrate the usefulness of the newly proposed Figure-words for representing images. Moreover, the results showcase the value of Figure-words, captions and titles-and-abstracts in providing complementary information for document classification; these three sources of information when combined, lead to an overall improved classification performance. AVAILABILITY AND IMPLEMENTATION: Source code and the list of PMIDs of the publications in our datasets are available upon request

    Maleic anhydride-modified chicken ovalbumin as an effective and inexpensive anti-HIV microbicide candidate for prevention of HIV sexual transmission

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Previous studies have shown that 3-hydroxyphthalic anhydride (HP)-modified bovine milk protein, β-lactoglobulin (β-LG), is a promising microbicide candidate. However, concerns regarding the potential risk of prion contamination in bovine products and carcinogenic potential of phthalate derivatives were raised. Here we sought to replace bovine protein with an animal protein of non-bovine origin and substitute HP with another anhydride for the development of anti-HIV microbicide for preventing HIV sexual transmission.</p> <p>Results</p> <p>Maleic anhydride (ML), succinic anhydride (SU) and HP at different conditions and variable pH values were used for modification of proteins. All the anhydrate-modified globulin-like proteins showed potent anti-HIV activity, which is correlated with the percentage of modified lysine and arginine residues in the modified protein. We selected maleic anhydride-modified ovalbumin (ML-OVA) for further study because OVA is easier to obtain than β-LG, and ML is safer than HP. Furthermore, ML-OVA exhibited broad antiviral activities against HIV-1, HIV-2, SHIV and SIV. This modified protein has no or low <it>in vitro </it>cytotoxicity to human T cells and vaginal epithelial cells. It is resistant to trypsin hydrolysis, possibly because the lysine and arginine residues in OVA are modified by ML. Mechanism studies suggest that ML-OVA inhibits HIV-1 entry by targeting gp120 on HIV-1 virions and also the CD4 receptor on the host cells.</p> <p>Conclusion</p> <p>ML-OVA is a potent HIV fusion/entry inhibitor with the potential to be developed as an effective, safe and inexpensive anti-HIV microbicide.</p

    Irradiation- Induced Extremes Create Hierarchical Face- /Body- Centered- Cubic Phases in Nanostructured High Entropy Alloys

    Full text link
    A nanoscale hierarchical dual- phase structure is reported to form in a nanocrystalline NiFeCoCrCu high- entropy- alloy (HEA) film via ion irradiation. Under the extreme energy deposition and consequent thermal energy dissipation induced by energetic particles, a fundamentally new phenomenon is revealed, in which the original single- phase face- centered- cubic (FCC) structure partially transforms into alternating nanometer layers of a body- centered- cubic (BCC) structure. The orientation relationship follows the Nishiyama- Wasser- man relationship, that is, (011)BCC || (- 1¯1¯1)FCC and [100]BCC || [- 11¯0]FCC. Simulation results indicate that Cr, as a BCC stabilizing element, exhibits a tendency to segregate to the stacking faults (SFs). Furthermore, the high densities of SFs and twin boundaries in each nanocrystalline grain serve to accelerate the nucleation and growth of the BCC phase during irradiation. By adjusting the irradiation parameters, desired thicknesses of the FCC and BCC phases in the laminates can be achieved. This work demonstrates the controlled formation of an attractive dual- phase nanolaminate structure under ion irradiation and provides a strategy for designing new derivate structures of HEAs.A nanoscale hierarchical dual- phase structure is reported to form in a nanocrystalline NiFeCoCrCu high- entropy- alloy film via ion- irradiation- induced face- centered- cubic to body- centered- cubic phase transformation. Both kinetic and thermodynamic conditions for the phase transformation are explored. The results provide a new strategy for tailoring material structures on the nanometer or sub- nanometer scales.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/162803/3/adma202002652_am.pdfhttp://deepblue.lib.umich.edu/bitstream/2027.42/162803/2/adma202002652.pdfhttp://deepblue.lib.umich.edu/bitstream/2027.42/162803/1/adma202002652-sup-0001-SuppMat.pd

    L2hgdh Deficiency Accumulates l-2-Hydroxyglutarate with Progressive Leukoencephalopathy and Neurodegeneration

    Get PDF
    l-2-Hydroxyglutarate aciduria (L-2-HGA) is an autosomal recessive neurometabolic disorder caused by a mutation in the l-2-hydroxyglutarate dehydrogenase (L2HGDH) gene. In this study, we generated L2hgdh knockout (KO) mice and observed a robust increase of l-2-hydroxyglutarate (L-2-HG) levels in multiple tissues. The highest levels of L-2-HG were observed in the brain and testis, with a corresponding increase in histone methylation in these tissues. L2hgdh KO mice exhibit white matter abnormalities, extensive gliosis, microglia-mediated neuroinflammation, and an expansion of oligodendrocyte progenitor cells (OPCs). Moreover, L2hgdh deficiency leads to impaired adult hippocampal neurogenesis and late-onset neurodegeneration in mouse brains. Our data provide in vivo evidence that L2hgdh mutation leads to L-2-HG accumulation, leukoencephalopathy, and neurodegeneration in mice, thereby offering new insights into the pathophysiology of L-2-HGA in humans

    Evolution of microstructure and nanohardness of SiC fiber-reinforced SiC matrix composites under Au ion irradiation

    Get PDF
    Abstract(#br)Evolution of microstructure and nanohardness of a new type of SiC f /SiC composite under a 6 MeV Au ion irradiation up to 90 displacements per atom at 400 °C was studied. Scanning transmission electron microscopy reveals that the irradiation has induced enrichment of carbon at the grain boundaries in the fibers. This is attributed to the accumulation of C interstitials generated by the irradiation. The disappearance of {200} diffraction ring of 3C–SiC indicates that a phase transition from 3C–SiC to Si has occurred during irradiation. In addition, the hardness of SiC fiber increased after irradiation, which is due to the pinning effect caused by irradiation-induced defects. The pyrolytic-carbon interphase that contains Si-rich nano-grains in the composite has the highest irradiation tolerance as it maintained its basic morphology and graphitic nature after a radiation damage dose up to 90 dpa. Twins are the main internal defects in the SiC matrix of the SiC f /SiC composite, which grew up and resulted in the decrease of the number of twinning boundaries under irradiation. No significant microstructure change has been observed in the SiC matrix except a limited number of dislocation loops at the peak irradiation damage region. The entire matrix still maintained its hardness after irradiation

    Regular Patterns for Proteome-Wide Distribution of Protein Abundance across Species

    Get PDF
    A proteome of the bio-entity, including cell, tissue, organ, and organism, consists of proteins of diverse abundance. The principle that determines the abundance of different proteins in a proteome is of fundamental significance for an understanding of the building blocks of the bio-entity. Here, we report three regular patterns in the proteome-wide distribution of protein abundance across species such as human, mouse, fly, worm, yeast, and bacteria: in most cases, protein abundance is positively correlated with the protein's origination time or sequence conservation during evolution; it is negatively correlated with the protein's domain number and positively correlated with domain coverage in protein structure, and the correlations became stronger during the course of evolution; protein abundance can be further stratified by the function of the protein, whereby proteins that act on material conversion and transportation (mass category) are more abundant than those that act on information modulation (information category). Thus, protein abundance is intrinsically related to the protein's inherent characters of evolution, structure, and function

    Deciphering the origin of the Cenozoic intracontinental rifting and volcanism in eastern China using integrated evidence from the Jianghan Basin

    Get PDF
    Intracontinental rifting and low-volume volcanism are a globally common phenomenon, yet the underlying driving mechanisms and whether they can be explained through classic plate tectonic concepts, remain hotly debated. A prominent example is the Cenozoic rift and volcanic province in eastern China. Using an integration of geological, geophysical and geochemical data, we unravel the spatial and temporal variations of the rifting and volcanism in the Jianghan Basin. Both rifting and volcanism in the Jianghan Basin show two intense-to-weak cycles (65–50 Ma and 50–26 Ma, respectively) with significant enhancement in activity during the late rift phase. Moreover, rifting and depocentres progressively migrated eastward. The Jianghan basalts all share an asthenospheric origin while the source of the late phase basalts is slightly more enriched and heterogenous in Nd-Hf isotopes than that of the early phase basalts. The late phase basalts also display a smaller extent of partial melting even under a thinner lithosphere, likely indicating a significant decrease of volatile content in the mantle source. Based on regional tectonic correlations, the main stages of tectonic evolution of the Jianghan Basin and eastern China are not synchronous with changes in Pacific plate motion, while they are coincident with India-Asia collision processes. These observations lead us to propose that the asthenospheric flow driven by India-Asia collision rather than the rollback of the subducted Pacific slab has caused the widespread rifting and volcanism in eastern China. The variations of rifting and volcanism in the Jianghan Basin suggest a multiphase and eastward asthenospheric flow beneath eastern China driven by India-Asia collision, with an intense upwelling when passing through the North-South Gravity Lineament (NSGL). The much more intense rifting and volcanism during the late rift phase may indicate a much larger scale of volatile-poor asthenospheric flow than the early rift phase which could result in a more intense erosion of ancient enriched lithospheric mantle and the volatile content in the mantle source dropping sharply. This study provides an improved model based on our multidisciplinary observations for asthenospheric flow which may be an alternative driving mechanism for intracontinental rifting and low-volume volcanism in the regions where there are step changes in lithospheric thickness globally
    corecore