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Abstract

Motivation: Biomedical research findings are typically disseminated through publications. To simplify access to do-
main-specific knowledge while supporting the research community, several biomedical databases devote significant
effort to manual curation of the literature—a labor intensive process. The first step toward biocuration requires iden-
tifying articles relevant to the specific area on which the database focuses. Thus, automatically identifying publica-
tions relevant to a specific topic within a large volume of publications is an important task toward expediting the bio-
curation process and, in turn, biomedical research. Current methods focus on textual contents, typically extracted
from the title-and-abstract. Notably, images and captions are often used in publications to convey pivotal evidence
about processes, experiments and results.

Results: We present a new document classification scheme, using both image and caption information, in addition
to titles-and-abstracts. To use the image information, we introduce a new image representation, namely Figure-
word, based on class labels of subfigures. We use word embeddings for representing captions and titles-and-
abstracts. To utilize all three types of information, we introduce two information integration methods. The first com-
bines Figure-words and textual features obtained from captions and titles-and-abstracts into a single larger vector
for document representation; the second employs a meta-classification scheme. Our experiments and results dem-
onstrate the usefulness of the newly proposed Figure-words for representing images. Moreover, the results show-
case the value of Figure-words, captions and titles-and-abstracts in providing complementary information for docu-
ment classification; these three sources of information when combined, lead to an overall improved classification
performance.

Availability and implementation: Source code and the list of PMIDs of the publications in our datasets are available
upon request.

Contact: pengyuan@udel.edu or shatkay@udel.edu

1 Introduction

Biomedical research findings are typically reported via publications.
To simplify access to domain-specific knowledge, while supporting
the research community, several biomedical databases [e.g. UniProt
(Bateman et al., 2021), BioGRID (Chatr-Aryamontri et al., 2017),
Wormbase (Harris et al., 2020) and MGI (Blake et al., 2021)] invest
significant effort in expert curation of the literature. The first step in
the biocuration process is to identify articles that are relevant to a
specific area on which the biomedical databases focus. For example,
biocurators at the Jackson Laboratory’s Gene Expression Database

(GXD) identify publications relevant to gene expression during
mouse development (Finger et al., 2017). Manually selecting bio-
medical publications in such focus areas is often too labor-intensive
and slow for effectively detecting all and only the relevant articles
within a large volume of published literature. As such, automatically
identifying publications relevant to a specific topic is an important
task toward expediting biocuration and, in turn, biomedical
research.

The vast majority of current methods for categorization of bio-
medical documents focus on textual contents which are typically
extracted from the title and the abstract of the publication. Several

Bioinformatics, 37, 2021, i468–i476

doi: 10.1093/bioinformatics/btab331

ISMB/ECCB 2021

VC The Author(s) 2021. Published by Oxford University Press. i468

This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits unre-

stricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited.

D
ow

nloaded from
 https://academ

ic.oup.com
/bioinform

atics/article/37/Supplem
ent_1/i468/6319676 by Jackson Laboratory user on 06 August 2021

https://academic.oup.com/


supervised learning methods, including Support Vector Machines
(SVMs) (Garcia et al., 2015), Decision Trees (Almeida et al., 2014)
and Neural Networks (Burns et al., 2019; Fergadis et al., 2018),
have been applied and studied to build document classifiers. Burns
et al. (2019) investigated the application of several word embedding
methods using different neural network configurations for identify-
ing scientific literature containing information about molecular
interaction. Rule-based methods have also been proposed for docu-
ment classification (Hu et al., 2005; Karystianis et al., 2017). For in-
stance, to identify epidemiological publications, Karystianis et al.
(2017) developed a set of rules based on syntactical patterns
observed from the training documents. Notably, current methods
utilize only textual information, while important research processes
and experimental results are often reported via images and their cap-
tions in publications.

Figures and captions convey fundamental, essential information
in biomedical documents. As such, there is a growing interest in
storing, browsing and in utilizing images and their respective cap-
tions as a source of knowledge. In particular, biomedical databases
are beginning to store and to display images as evidence for a variety
of processes and for experimental results (Finger et al., 2017; Liechti
et al., 2017). Notably, most current biomedical publications are
stored as Portable Document Format (PDF). An essential step to-
ward making use of images is the extraction of figures and captions
from the PDF files of publications. Several systems have been devel-
oped for identifying and extracting figures and captions from scien-
tific documents (Clark et al., 2016; Li et al., 2019).

Another obstacle toward utilizing biomedical images is the
abundance of compound figures comprising multiple panels (see e.g.
Fig. 1), where each panel often conveys a distinct information type
obtained via one of several possible diverse modalities. For instance,
both graphs and gel images may appear side-by-side as panels in a
single figure providing evidence for similar or for distinct findings.
In order to utilize the information from individual subfigures, it is
essential to segment compound images into their constituent panels.
Identifying compound figures and their constituent panels is a topic
of much research (Chhatkuli et al., 2013; Santosh et al., 2015),
including our own (Li et al., 2018).

Image captions have been shown effective for document classifi-
cation in several studies (Burns et al., 2019; Jiang et al., 2017, 2020;
Regev et al., 2002). For instance, Burns et al. (2019) compared clas-
sification performance under different information sources, when
identifying publications containing molecular interaction informa-
tion, relevant to the IntAct Molecular Interaction database (Kerrien
et al., 2012). Their experiments showed that a classifier utilizing fig-
ure captions outperformed classifiers using information from either
the title-and-abstract, MeSH terms, body text or figure description
from the body text. Our group is one of the first to use image con-
tent information for biomedical document classification (Ma et al.,
2015; Shatkay et al., 2006). Shatkay et al. (2006) first proposed to
use the class label of figures (such as: line chart, gel electrophoresis
and fluorescence microscopy) as image features to identify publica-
tions that are relevant to the Gene Ontology annotation task per-
formed by the Mouse Genome Informatics at the Jackson
Laboratory. A more recent work from our group integrates informa-
tion extracted from figures using Optical Character Recognition
with text information for identifying documents that are relevant to
cis-regulatory modules (Ma et al., 2015). However, none of the cur-
rent methods use image captions and image contents together. Thus,
we aim to integrate information from both image contents and their
respective captions, in addition to titles-and-abstracts, toward
improving biomedical document classification.

Here we introduce a new scheme that utilizes information from
images, captions and title-and-abstracts toward improved biomed-
ical document classification. To do this, we first extract figures, sub-
figures/panels and captions from the documents. In order to
represent figures within biomedical documents, we propose a new
image representation, namely, Figure-word that encodes the com-
bination of different types of panels within a figure. An image tax-
onomy is also introduced and used to train a classifier for
categorizing the extracted panels. For handling text-contents, we

employ word embeddings (Moen and Ananiadou, 2013), for both
caption-based and title-and-abstract-based document representa-
tions. To utilize all three types of information sources (images, cap-
tions and titles-and-abstracts), two information integration methods
are introduced. The first combines Figure-words and features
obtained from captions and title-and-abstract into a single larger
vector for document representation; while the second employs a
meta- classification scheme.

The rest of the paper presents the details of our method, and
demonstrates its effectiveness through a series of experiments.
Section 2 describes the complete framework of our method; Section
3 presents experiments and results, assessing its performance;
Section 4 discusses and analyzes the results, while Section 5 con-
cludes and outlines directions for future work.

2 Methods

Our goal is to identify biomedical documents that are relevant to a
specific domain by utilizing images and captions along with titles-
and-abstracts. To do that, we first extract figures and their captions
from the PDF files of biomedical documents, by employing the pars-
ing tool that we have developed—and is now publicly available—
PDFigCapX (https://www.eecis.udel.edu/�compbio/PDFigCapX)
(Li et al., 2019). As many of the extracted figures are compound
images comprising multiple panels, we also separate such figures
into their constituent panels, using our previously developed FigSplit
(https://www.eecis.udel.edu/�compbio/FigSplit) system (Li et al.,
2018) for compound image separation.

To represent images within biomedical documents, we first
introduce an image taxonomy comprising 12 categories, which
serves as framework for classifying biomedical figures. Next, we
train an image classifier to categorize the extracted panels. We intro-
duce a new image representation, namely, Figure-word, which enco-
des the combination of different types of panels in a figure, and use
it to generate an image-based representation of each document,
dIMG. Word embeddings, which convert a word to a numerical vec-
tor of a fixed number of dimensions have been prevalently used for
text representation (Mikolov et al., 2013). As such, we use word
embeddings pre-trained over a corpus of biomedical articles to gen-
erate, for each document d, its caption-based representation, dCAP,
as well as its title-and-abstract-based representation, dTA. We intro-
duce two information integration methods to utilize the information
from images and captions, in addition to titles-and-abstracts. The
first method concatenates the representations dIMG; dCAP and dTA

into a single larger vector for representing each document, d. The se-
cond is a meta-classification approach, combining the output of
base classifiers that were trained separately over images, captions
and titles-and-abstracts to train the final document classifier.

2.1 Extracting figures, subfigures and captions from

biomedical documents
To utilize image information, we first extract images and their corre-
sponding captions from the PDF file of biomedical publications.
Extracting figures and captions is not a simple task due to the com-
plex and diverse layout of biomedical publications and the varia-
tions in figure structure, texture and contents. To extract images
and their captions from biomedical publications, which are primar-
ily stored as PDF files, we use PDFigCapX (Li et al., 2019). Unlike
other methods that extract figures by handling raw encoded con-
tents of PDF documents, PDFigCapX begins by separating text from
graphical contents, utilizing layout information to detect and disam-
biguate figures and captions. Files containing the figures and their
associated captions are produced as output.

The vast majority of the extracted figures are compound images
consisting of multiple panels. In order to utilize image information
from each individual panel, we use our FigSplit tool (Li et al., 2018),
segmenting compound images into their constituent panels. Unlike
other methods that segment images using gaps between panels,
FigSplit identifies panels based on Connected Component Analysis.
It also overcomes the common issues of over- and under-
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segmentation by evaluating and self-correcting candidate segmenta-
tions that are likely to be inaccurate.

Both systems, PDFigCapX and FigSplit, were tested on existing
and on newly assembled datasets, demonstrating robustness and sig-
nificant improvement compared to other state-of-the-art methods
(Li et al., 2018, 2019). Figure 1 shows an example of our pipeline
for extracting figures, subfigures and captions from biomedical pub-
lications. The input to our pipeline is the original PDF document
shown on the left. By using PDFigCapX, figure and caption pairs are
extracted. The extracted images are shown in red dashed boxes. By
applying FigSplit, compound images are split into their constituent
panels—each shown within a solid blue box on the right.

2.2 Image-based document representation
Figures in biomedical publications are typically used to show the pro-
cess and results of experiments. Different types of images are used to
report certain types of experiments. For example, gel images are typic-
ally used in pull-down assays (Orchard et al., 2012). Class labels of
figures have been shown useful for document representation in bio-
medical document classification in our previous work (Shatkay et al.,
2006). As discussed in Section 2.1, the majority of figures within bio-
medical publications are compound images. Building upon our previ-
ous idea, we introduce here a new method to represent figures within
documents based on class labels of their constituent panels here.

While several image taxonomies were proposed for classifying bio-
medical images (De Herrera et al., 2016; Lopez et al., 2013; Shatkay
et al., 2006), as no standard exists, we extend the image taxonomy
previously proposed by our group, through collaboration with GXD
(Finger et al., 2017), Protein Information Resource (Wu et al., 2003)
and WormBase (Harris et al., 2020), as shown in Figure 2. At the top
level, images are classified into Graphics, Molecular Structure,
Experimental and Other images. At the second level, Graphics are
classified into Histogram, Line Chart and Other Diagram. Molecular
Structure images are classified into Macromolecule Sequence and 3D
Structure images. Experimental images are further classified into
Fluorescence Microscopy, Light Microscopy, Whole Mount, Gel and
Plate images. We also note that figure legends or margins are some-
times over-separated from their original images by the compound
image separation process, thus forming individual panels. We refer to
such panels formed by over-segmentation of compound images as sep-
aration residuals. As these residuals do not belong to any of the in-
formative taxonomy’s classes, we augment our taxonomy with a
separation residual class.

To automatically assign class label to individual panels, we build
an image classifier. A pre-trained Convolutional Neural Network,
VGG16 (Andrearczyk and Müller, 2018; Simonyan and Zisserman,
2015), is used for image classification. To train the classifier, we use
the annotated image dataset that was introduced by Lopez et al.
(2013) based on the Molecular INTeraction database dataset
(Licata et al., 2012). The image dataset consists of 34 876 pre-
labeled panels; its statistics are shown in Table 1. In addition, a set
of 500 labeled whole mount images were provided by GXD.

Trained and tested via a 5-fold cross validation, the classifier dem-
onstrates 87.89% accuracy.

Once the class label of each panel is obtained, we represent
each figure as an 11-dimensional binary vector < c1; c2; . . . ;
ci; . . . ; c11 >, where ci is 1 if a panel from class i is present in the figure

and 0 otherwise. For instance, if the figure comprises only histograms
and fluorescence microscopy panels (panels of type1 and type6 re-

spectively), its corresponding vector is: <1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0>.
We refer to each such vector as a Figure-word. Figure 3 shows the pro-
cess for converting figures into their corresponding Figure-words. As

the number of classes in our image-taxonomy is 11, the total number
of possible Figure-words in our vocabulary is 211 (2048). A document

d, in turn, is represented as a vector dIMG ¼< I1; I2; . . . ; Ii; . . . ; In >,
where n ¼ 211 and Ii (1 � i � 2048) is 1 if the ith Figure-word
appears in the document d, 0 otherwise.

2.3 Caption-based document representation
Captions associated with figures provide another important source

of information for biomedical document classification. In order to
make use of captions, we employ a standard preprocessing proced-
ure that includes named-entity recognition (NER), stemming and

stop-words removal as we have done in our earlier work (Jiang
et al., 2017, 2020). For NER, we first identify all gene, disease,

chemical, species, mutation and cell-line concepts using PubTator,
which is widely used for annotations of biomedical concepts (Wei
et al., 2019). We then substitute each of the identified concepts by

its respective generic terms ‘gene’, ‘disease’, ‘chemical’, ‘species’,
‘mutation’ or ‘cell-line’. We also stem words using the Porter

stemmer and remove standard stop words (Porter, 1980; Canese

Fig. 2. The image taxonomy used for panel classification

Fig. 1. An example of our pipeline for figures, subfigures and captions extraction. The original PDF document (Kobayashi et al., 2012) is shown on the left. Figures (dashed red

boxes) and captions are first extracted from the document using PDFigCapX. Figures then be further separated into subfigures (solid blue boxes) using FigSplit
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and Weis, 2013). The concatenated captions are used as the caption-
based document representation.

Word embeddings map words to vectors of a fixed dimension so
that words appearing in similar contexts are mapped to similar vec-
tors. Such a vectorized representation has been widely used for text
classification (Moen and Ananiadou, 2013), and more recently for
biomedical named entity recognition and biomedical relation extrac-
tion (Lee et al., 2020). A word embedding model (Moen and
Ananiadou, 2013) has been pre-trained specifically on a biomedical
corpus, which consists of PubMed titles-and-abstracts and PubMed
Central full text articles by employing the word2vec tool (Mikolov
et al., 2013). We use such embeddings to represent the concatenated
captions. Each word, wi, within the concatenated captions is con-
verted to a word embedding vector ~wi whose dimensionality is 200.
The document d is then represented as a 200-dimentional vector
dCAP, calculated as dCAP ¼ 1

n
~w1 þ ~w2 þ � � � þ ~wn Þð , where n is the

total number of distinct words in the concatenated captions, and ~wi

is the embedding vector of the ith distinct word.

2.4 Title-and-abstract-based document representation
The title and the abstract of articles are the text components most
often used for biomedical document classification. To represent a
document based on those, we first obtain the title-and-abstract of
each publication. Similar to the steps described in Section 2.3, we
employ a standard preprocessing procedure that includes named-en-
tity recognition, stemming and stop-words removal to each title-
and-abstract. The same word embeddings described in Section 2.3
are employed to convert each word wi in the preprocessed text to a
word embedding vector ~wi . The document d is then represented as a
200-dimensional vector, denoted as dTA, by calculating the mean of
embedding vectors that are associated with words in the prepro-
cessed text.

2.5 Information integration for document classification
So far, we have introduced document representations based on
images (dIMG), captions (dCAP) and title-and-abstracts (dTA). Next,
we present two schemes for integrating the information stemming
from these three sources.

(1) Integration via concatenated vectors

Under this scheme, to represent a document d, we simply concat-
enate the vectors dIMG; dCAP and dTA into a single vector dALL, thus
utilizing the information obtained from images, captions and titles-
and-abstracts. Recall that the value of an entry in the dIMG vector is
either 1 or 0 which indicates whether or not a Figure-word appears
in a document, while the value of an entry in dCAP or dTA is obtained
by calculating the mean of embedding vectors converted from words
in a caption or a title-and-abstract. There is no specific limit on the
range of embedding vectors. Therefore, the values of such entries are
at different scales from that of entries in dIMG. As such, we standard-
ize each feature within dALL by rescaling the features such that they
have a mean of 0 and a standard deviation of 1. For classifying the
documents, we conducted experiments with several classification
schemes, including Random Forests, Naı̈ve Bayes (not shown here)
and SVMs. As SVMs have been commonly used for both image and
text classification, and have shown the best performance in this con-
text (Holzinger et al., 2014; Simpson et al., 2015), we use SVM as
the model for classifying the final resulting document-vectors, and
denote this SVM classifier CombV.

(2) Integration via meta-classification
Another approach we propose toward integrating the multiple

types of information is to employ a meta-classification scheme,
which combines results obtained from multiple base classifiers into
a single classification output. To do that, we first separately train
three base classifiers CIMG; CCAP and CTA using the representations
of images ðdIMGÞ, captions (dCAP) and titles-and-abstracts (dTA). By
applying a base classifier to a document d, we obtain the class label
L and the probability P of document d to be assigned to the relevant
class. Each document d is then represented as a 6-dimensional vector
dCombC ¼< LIMG;PIMG;LCAP;PCAP;LTA;PTA >. This representation
is then used for training another classifier, referred to as meta-classi-
fier, denoted as CombC, which assigns the final class label to each
document. Similar to the concatenation-based integration, we use
SVMs both as base classifiers and as the ultimate classifier in the
meta-classification.

3 Experiments and results

To evaluate our method we conduct two sets of experiments. The
first aims to compare the classification performance obtained when

Table 1. Distribution of image types included in our experiments, based on the image dataset introduced by Lopez et al. (2013)

Histogram Line

chart

Other

diagram

Macromolecule

sequence

3D

structure

Fluorescence

microscopy

Gel/blot Plate Light

microscopy

Other Separation

residual

No. of panels 4270 2664 3536 499 1424 5714 14865 508 1156 130 110

Fig. 3. The process for converting figures into their corresponding Figure-words. The set of figures extracted from the biomedical documents is shown on the left. The corre-

sponding Figure-words along with their vector representations indicating the types of comprising panels, are shown on the right. The images on the left are taken from (Li

et al., 2008, Fig. 4; Qiu and Dhe-Paganon, 2011, Fig. 6; Sugioka et al., 2014, Fig.3; Leung et al., 2012, Fig. 9; Heinonen et al., 2015, Fig. 4; Dai et al., 2012, Fig. 3)
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using only a single type of information to represent documents ver-
sus the performance when employing a representation that combines
all three types of information. The classifiers using the representa-
tions of Figure-words, captions and titles-and-abstracts, are denoted
as CIMG; CCAP and CTA, respectively.

In the second set of experiments, we compare the performance of
our system when utilizing a representation that combines images,
captions and titles-and-abstracts to the performance attained by
three state-of-the-art systems. The first system to which we compare
is a random forest-based method (RFCAP) developed by Jiang et al.
(2017) for identifying publications that are relevant to GXD. This
classifier uses features extracted from the title-and-abstract and
from caption text. The second is a convolutional neural network tri-
age system (CNNBiLSTM) presented by Burns et al. (2019) for identi-
fying publications containing information about molecular
interactions. The CNNBiLSTM classifier uses captions only. The third
is a hierarchical recurrent neural network classification system
(HRNN) developed by Fergadis et al. (2018) for identifying publica-
tions containing information about protein-protein interactions
affected by genetic mutations; and uses title-and-abstract only. We
compare all three systems using the code provided by their respective
authors. For comparison, we run five complete rounds of 5-fold
cross validation with 5 different 5-way partitions of the dataset. All
experiments are conducted on a DELL machine that uses an Intel
Core i7-6700 processor, an Nvidia GTX 1070 GPU, 8 GB of RAM
and 256 GB of SSD.

3.1 Datasets and evaluation
In our experiments, we use two datasets for which we have the
ground-truth class-labels. The first dataset, denoted GXD2000, is a
subset of the dataset used by Jiang et al. (2017), who is also the de-
veloper of RFCAP. The original dataset is a collection of 58 362 pub-
lications (provided as PDF), curated by the Jackson Lab’s GXD
throughout the years 2012–2016. As a first test of our method, we
selected at random 1000 relevant and 1000 irrelevant documents
from these publications, while retaining the same distribution of
publication-years as in the larger GXD dataset. In order to use fig-
ures and captions, we first apply PDFigCapX to the GXD2000 data-
set. 8939 figures and 8594 captions are extracted from the relevant
publications, while 8414 figures and 8042 captions are extracted
from the irrelevant publications. We note that the number of figures
extracted exceeds that of the captions, as some pages display figures
(or parts of figures) without associated captions. FigSplit is then
applied to separate compound figures into their constituent panels,
resulting in 60 194 individual panels extracted from the 8939 figures

associated with relevant publications and 41 015 panels obtained
from the 8414 figures associated with the irrelevant publications.

The second dataset used in our experiments, denoted DSP, was
introduced by Burns et al. (2019) for testing their system
CNNBiLSTM. It comprises 537 publications relevant to molecular
interactions and 451 irrelevant ones spanning the year range 1996-
2017. Only publications for which PDF files are available are used
in our experiments. As such, out of the 537 relevant publications
only 534 are used, while out of the 451 irrelevant ones only 448 are
retained, as their PDF files were available for download online. We
then apply PDFigCapX and FigSplit to identify and extract figures,
captions and constituent panels of extracted figures. From the 534
relevant publications, 3975 figures, 3912 captions and 21 421 pan-
els are extracted, while 2928 figures, 2832 captions and 14 224 pan-
els are extracted from the 448 irrelevant ones. Table 2 shows the
statistics for these two datasets.

The total time for PDFigCapX to process the GXD2000 dataset
of 2000 publications is about 5.9 h (10.60 s per document, wall
clock) where the average document contains 8.7 figures, 8.3 cap-
tions and is 7.2MB in size. It takes about 4.3 h (0.83 s per image,
wall-clock) for FigSplit to process all extracted figures where on
average 50.6 panels are extracted from each publication within the
GXD2000 dataset. Over the DSP dataset, PDFigCapX takes about
2.4 h (8.69 s per document, wall-clock) to process all 982 publica-
tions where the average document contains 7.0 figures, 6.9 captions
and the average file size is 2.8MB. FigSplit takes about 1.6 h (0.78 s
per image, wall-clock) to process all extracted figures where on aver-
age 36.3 panels are extracted from each publication in the DSP
dataset.

To evaluate the document classification performance, we use
standard measures, Precision, Recall and F-score defined as:

Precision ¼ TruePositive

TruePositiveþ FalseNegative
;

Recall ¼ TruePositive

TruePositiveþ FalsePositive
;

F � score ¼ 2� Precision� Recall

Precisionþ Recall
:

3.2 Results
Table 3 presents the classification performance attained when using
only a single type of information to represent documents, along with

Table 2. The number of figures, captions and panels identified and extracted from publications in the datasets used in our experiments

Datasets Classes No. of docs No. of figures No. of captions No. of panels

GXD2000 Relevant 1000 8939 8594 60 194

Irrelevant 1000 8414 8042 41 015

DSP Relevant 534 3975 3912 21 421

Irrelevant 448 2928 2832 14 224

Table 3. Classification performance attained by using information from images (CIMG), captions (CCAP), the title-and-abstract (CTA), concaten-

ated vectors from all three types (CombV), and by using the meta-classifier (CombC). The highest values attained are shown in boldface.

Standard deviations are shown in parentheses.

GXD2000 DSP

Classifiers Precision Recall F-score Precision Recall F-score

CIMG 0.805 (.021) 0.770 (.026) 0.787 (.021) 0.679 (.018) 0.768 (.026) 0.731 (.026)

CCAP 0.886 (.027) 0.871 (.032) 0.878 (.021) 0.804 (.024) 0.809 (.034) 0.806 (.021)

CTA 0.875 (.021) 0.877 (.015) 0.876 (.013) 0.790 (.023) 0.807 (.023) 0.798 (.015)

CombC 0.887 (.019) 0.899 (.025) 0.893 (.008) 0.822 (.032) 0.826 (.044) 0.823 (.020)

CombV 0.894 (.019) 0.910 (.017) 0.902 (.008) 0.831 (.014) 0.834 (.031) 0.832 (.019)
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the performance when employing a representation that combines all
three types of information in our first set of experiments. The second
to fourth columns in the table show results from experiments over
the GXD2000 dataset. Our classifier CIMG, utilizing the Figure-words
alone, attained 80.5% precision, 77.0% recall and 78.7% F-score.
By using information from the caption alone, our classifier CCAP

attained 88.6% in precision, 87.1% in recall and 87.8% in F-score.
A similar performance (87.5% precision, 87.7% recall and 87.6%
F-score) is attained by the classifier CTA when titles-and-abstracts
are used to represent documents. Notably, a significant improve-
ment is attained by using the representation that combines informa-
tion from images, captions and titles-and-abstracts. By employing
the meta-classification scheme, our classifier CombC attained
88.7% precision, 89.9% recall and 89.3% F-score. Our classifier
CombV attained the highest performance of 89.4% precision,
91.0% recall and 90.2% F-score when the concatenated vectors are
used for document representation. The performance attained by
using the integrated information is statistically significantly higher
than the performance attained based on the Figure-words, the cap-
tions or the titles-and-abstracts alone (P<0.01, two-sample t-test
for all measures).

The three rightmost columns in Table 3 present the results
attained over the DSP dataset. When the Figure-words are used for
document representation, our classifier CIMG attained 69.7% preci-
sion, 76.8% recall and 73.1% F-score. The classifier CCAP attained
80.4% precision, 80.9% recall and 80.6% F-score. A similar per-
formance (79.0% precision, 80.7% recall and 79.8% F-score) is
attained by CTA when titles-and-abstracts are used for document
representation. Again, a significant improvement is attained by
using the integrated information. We attained 82.2% precision,
82.6% recall and 82.3% F-score when the meta-classification
scheme is applied. The highest performance of 83.1% precision,
83.4% recall and 83.2% F-score is attained when the concatenated
vectors are used to represent documents. The performance attained
by classifiers that integrate information from images, captions and
titles-and-abstracts is statistically significantly higher than the per-
formance attained by classifiers that are based on single information
source (P<0.01, two-sample t-test for all measures). Our results
demonstrate that our information integration schemes indeed im-
prove biomedical document classification.

Table 4 compares the performance of our classifier CombV to
that attained by the three other state-of-the-art systems, RFCAP,
CNNBiLSTM and HRNN. Over the GXD2000 dataset, RFCAP

attained 82.9% recall, 87.8% F-score and the highest precision of
93.4%. CNNBiLSTM achieved 87.6% precision, 85.0% recall and
86.2% F-score, while HRNN attained 85.5% in precision, 87.5%
in recall and 86.4% in F-score. While the precision (89.4%) attained
by our classifier is slightly lower than that reached by RFCAP, our
classifier CombV attained the highest recall of 91.0% and the high-
est F-score of 90.2% over the GXD2000 dataset. Notably, recall is
often viewed as more important than precision for biomedical docu-
ment curation (Fang et al., 2012; Müller et al., 2004). Moreover,
the differences between the results obtained by our system and those
attained by RFCAP, CNNBiLSTM and HRNN are statistically signifi-
cant (P<0.001, two-sample t-test). The three rightmost columns in
Table 4 presents the results attained over the DSP dataset. RFCAP

achieved 79.8% precision, 80.9% recall and 79.8% F-score, while
HRNN attained 75.4% precision, 81.8% recall and an F-score of

78.3%. The CNNBiLSTM system, whose author introduced the DSP
dataset itself, reached 82.0% precision, 79.6% recall and 80.9% F-
score. Our classifier attained the highest performance of 83.1% pre-
cision, 83.4% recall and 83.2% F-score over the DSP dataset.
Moreover, the differences between the results obtained by our classi-
fier and those attained by other state-of-the-art systems are statistic-
ally significant (P<0.001, two-sample t-test).

4 Discussion

Notably, Figure-words provide important information for document
classification. The image-based classifier, CIMG, which uses the
newly proposed Figure-words alone for document representation
attained 80.5% precision, 77.0% recall and 78.7% F-score over the
GXD2000 dataset, while attaining 69.7% precision, 76.8% recall
and 73.1% F-score when applied to the DSP dataset (Table 3).
Moreover, Figure-words provide information distinct from that cap-
tured by captions or by titles-and-abstracts. Of the GXD2000 data-
set, 71 relevant publications (7.1% of the relevant publications)
were correctly identified by CIMG, but incorrectly classified by CCAP,
while 71 publications were correctly identified by CIMG, but incor-
rectly classified by CTA. Of the DSP dataset, 59 relevant publica-
tions (11.0% of the relevant data) were correctly identified by CIMG,
but incorrectly classified by CCAP, while 56 publications (10.5% of
the relevant data) were correctly identified by CIMG, but incorrectly
classified by CTA.

Another noteworthy point is that captions provide distinct infor-
mation from that provided by titles-and-abstracts for document clas-
sification. As indicated in Section 3.2, the performances attained
using a classifier based on captions or titles-and-abstracts alone
(CCAP and CTA, respectively) are similar over both the GXD2000 and
the DSP datasets. However, the relevant publications identified by
classifiers CCAP and CTA are quite different. Of the GXD2000 data-
set, 60 relevant publications (6.0% of the relevant ones) were cor-
rectly identified by CCAP, but incorrectly classified by CTA, while 66
distinct publications were correctly identified by CTA, but incorrect-
ly classified by CCAP. Of the DSP dataset, 38 relevant publications
(7.1% of the relevant data) were correctly identified by CCAP, but in-
correctly classified by CTA, while 37 distinct publications were cor-
rectly identified by CTA, but incorrectly classified by CCAP. By their
very nature, titles-and-abstracts form a high-level summary of an en-
tire study, while captions present details of experimental processes
and results. This difference is reflected in the vocabulary of titles-
and-abstracts versus that of captions. For instance, words such as
anterior, WT, dorsal, embryo, green, lateral and mount, are com-
monly found in captions of publications relevant to GXD when
describing gene expression experiments in mouse embryos. As such,
captions provide information that is distinct from that provided
through titles-and-abstracts, thus supporting more effective
classification.

Figure 4 illustrates the respective classification results attained
by the classifiers CIMG, CCAP and CTA. Of the GXD2000 dataset, 18
relevant publications are identified only by CCAP, while 24 relevant
ones are identified only by CTA. Notably, 29 relevant publications
can only be identified by CIMG using Figure-words for document
representation. Of the DSP dataset, classifier CIMG identified 32
relevant publications that are distinct from those identified by CCAP

Table 4. Classification performance Comparison with other state-of-the-art systems. The highest values attained are shown in boldface.

Standard deviations are shown in parentheses.

GXD2000 DSP

Classifiers Precision Recall F-score Precision Recall F-score

RFCAP 0.934 (.017) 0.829 (.037) 0.878 (.018) 0.798 (.068) 0.809 (.057) 0.798 (.030)

CNNBiLSTM 0.876 (.028) 0.850 (.031) 0.862 (.013) 0.820 (.023) 0.796 (.030) 0.809 (.018)

HRNN 0.856 (.044) 0.875 (.033) 0.864 (.010) 0.754 (.032) 0.818 (.054) 0.783 (.017)

CombV 0.894 (.019) 0.910 (.017) 0.902 (.008) 0.831 (.014) 0.834 (.031) 0.832 (.019)

Utilizing image information for biomedical document classification i473

D
ow

nloaded from
 https://academ

ic.oup.com
/bioinform

atics/article/37/Supplem
ent_1/i468/6319676 by Jackson Laboratory user on 06 August 2021



and CTA. These findings strongly suggest that the three data sources,
namely, Figure-words, captions and titles-and-abstracts provide dis-
tinct and complementary information for document classification.

To better understand the contribution of Figure-words to
improved classification, we identify the most distinguishing Figure-
words by ranking them based on the Z-score Test (Myers et al.,
1993), as we have done before for identifying distinguishing text
terms (Jiang et al., 2017, 2020). Table 5a shows the top-5 scoring
Figure-words, along with their occurrence frequency in the relevant
and in the irrelevant publications of the GXD2000 dataset. There is a
significant difference between the Figure-word distribution in rele-
vant publications and their distribution in irrelevant ones. For in-
stance, there are 1339 images consisting of fluorescence alone in
relevant publications of the GXD2000, while only 437 such images
in the irrelevant publications. Similarly, Table 5b shows that the dis-
tinguishing Figure-words identified with respect to the DSP dataset,
demonstrate a clear difference in Figure-word distribution between
relevant publications and irrelevant ones. Therefore, we believe that
our newly proposed Figure-words have much potential for improv-
ing biomedical document classification.

Figure 5 shows examples of Figure-words. Notably, the top scor-
ing Figure-words also correspond to images that are typically found
in distinct biomedical experiments. For instance, fluorescence mi-
croscopy images often appear in publications relevant to the GXD
as this is a common imaging technique for visualizing gene expres-
sion. As curators at the GXD focus on mouse embryo studies,
Figure-words containing embryonic whole-mount images are also
indicative of documents that are likely relevant to GXD. Similarly,
Co-inmmunoprecipitation, and Pull Down experiments are com-
monly used in studies relevant to molecular interactions, thus
Figure-words corresponding to the gel/blot images are important for

document classification over the DSP dataset (Fig. 5b). As such, our
newly proposed Figure-words compactly account for and convey
certain types of biomedical experiments. Experimental evidence is
important for identifying relevant biomedical documents (Burns
et al., 2018; Han et al., 2006), thus our Figure-words can contribute
much informative evidence to the document classification task.

As discussed above, Figure-words, captions and titles-and-
abstracts provide complementary information for document

Fig. 4. Comparison of classification results between the classifiers CIMG; CCAP and

CTA. The solid circle corresponds to the relevant publications that are correctly

identified by classifier CIMG. The relevant publications correctly classified by CCAP

are indicated as a dashed circle, while those correctly identified by CTA are shown as

a dotted circle. The region marked by horizontal stripes indicates the relevant publi-

cations identified by classifier CIMG only. The region marked by grid pattern corre-

sponds to the relevant publications classified by CCAP only, while the region shown

in solid gray indicates those identified by CTA only. (a) The comparison over the

GXD2000 dataset. (b) The comparison over the DSP dataset

Fig. 5. Examples of images for top scoring Figure-words. The leftmost column

shows Figure-words along with their vector representations and their respective

combination of panel types. The rest of the columns show examples of correspond-

ing images. (a) Image examples from the GXD2000 dataset. Original images are

taken from (Vogt et al., 2012, Fig. 1; Grimsley-Myers et al., 2012, Fig. 7;

Yamaguchi et al., 2014, Fig. 5; Quattrocolo & Maccaferri, 2014, Fig. 1; Liu et al.,

2012, Fig. 6; Rooijen et al., 2012, Fig. S3). (b) Image examples from the DSP data-

set. Original images are taken from (Shinohara et al., 2005, Fig. 3; Cheng et al.,

2016, Fig. 4; Mysling et al., 2016, Fig. 1; Yoshida et al., 2014, Fig. 3; Graef et al.,

2009, Fig. 6; Li et al., 2008, Fig. 4)

Table 5. Top scoring Figure-words that contribute to the document classification task. The left most column in each table shows the Figure-

words and their corresponding vectors indicating the types of comprising panels. The other two columns show the occurrence frequencies

of corresponding figures in the relevant and in the irrelevant dataset, respectively. (a) Top Figure-words identified over the GXD2000 data-

set. (b) Top Figure-words identified over the DSP dataset.
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classification. A significant improvement is obtained by using the
representation comprising all three sources. In our experiments, we
attained statistically significantly improved performance by employ-
ing the meta-classification scheme CombC as well as by employing
the classifier, CombV, where concatenated vectors are used for
document representation, as compared to classification based on the
title-and-abstracts, the captions and the Figure-words alone.

In the second set of experiments when our system is compared
against three state-of-the-art systems, over the GXD2000 dataset,
two classifiers (CNNBiLSTM, HRNN) utilizing only a type of infor-
mation source attained similar performance. The RFCAP classifier
which uses features extracted from combined title-and-abstract and
caption text, indeed outperforms the systems that use just a single
type of information. Our method, which integrates the information
from Figure-words, captions and titles-and-abstracts attained the
highest recall and F-score over the GXD2000 dataset. When applied
to the DSP dataset, our method attained the highest score across all
measures. These results demonstrate that Figure-words provide in-
formation distinct from that provided by titles-and-abstracts and by
captions for supporting classification, and also prove the effective-
ness of the integration methods that we introduced.

While our method indeed improves classification performance,
there is still room for improvement, especially for the image tax-
onomy. In the work reported here, we utilized the image taxonomy
consisting of 11 categories, as there is no unique standard image tax-
onomy for categorizing biomedical research images yet. A more
comprehensive taxonomy has the potential to support a more in-
formative Figure-words vocabulary and as such improve the overall
document classification results. In our future work, we plan to ex-
pand and refine the image taxonomy we employ for categorizing
biomedical research images. We are already in the process of apply-
ing our classification scheme to a larger dataset, namely the
COVID-19 open research dataset comprising more than 50 000
articles (Chen et al., 2020; Wang et al., 2020), and plan to further
apply it to the complete GXD dataset of more than 58 000 publica-
tions used by Jiang et al. (2017).

As our newly proposed Figure-words correspond to distinct
images used in certain types of biomedical experiments, our image
representation method can help biocurators identify images accord-
ing to their experiment types. For example, a biocurator may want
to identify images used in yeast two-hybrid experiments based on
the images used to describe such experiments. We will also investi-
gate the usage of our image representation for other tasks, such as
biomedical image classification.

5 Conclusion

We presented a new scheme for identifying biomedical documents
that are relevant to a certain domain, by using information derived
from both images and captions, as well as from titles-and-abstracts.
To do so, we first employed a pipeline for processing biomedical
documents, comprising two parts: PDFigCapX that extracts figures
with their captions from documents, and FigSplit for splitting the
extracted compound figures into constituent panels, to biomedical
documents.

A new image representation, Figure-word that encodes the com-
bination of different types of panels is proposed for representing fig-
ures within documents. For captions and titles-and-abstracts, word
embeddings are employed to represent documents as vectors. To
utilize both image and caption information, in addition to titles-
and-abstracts, we introduced two information integration methods.
The first concatenates Figure-words and features obtained from cap-
tions and titles-and-abstracts into a single larger vector for docu-
ment representation; the second employs a meta-classification
scheme. Our experiments demonstrate the effectiveness of the newly
proposed Figure-words for representing images. Moreover, classifi-
cation performance is improved through the integration of informa-
tion from all three sources, namely, images, captions and titles-and-
abstracts.

As part of future work, we plan to build a more comprehensive
taxonomy for refining image classification and improving the

document classification performance. It is noteworthy that the
newly proposed Figure-words correspond to certain distinct types of
images used in reporting biomedical experiments. We will investi-
gate the potential usage of Figure-words for other tasks, such as bio-
medical image classification.
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