63 research outputs found

    <BOOK REVIEWS>

    Get PDF
    The performance of zeolitic imidazolate framework-8 (ZIF-8) for CO<sub>2</sub> capture under three different conditions (wetted ZIF-8, ZIF-8/water slurry, and ZIF-8/water–glycol slurry) was systemically investigated. This investigation included the study of the pore structure stability of ZIF-8 by using X-ray diffraction, scanning electron microscopy, Fourier transform infrared spectroscopy, and Raman detection technologies. Our results show that the CO<sub>2</sub> adsorption ability of ZIF-8 could be substantially increased under the existence of liquid water. However, the structure characterization of the recovered ZIF-8 showed an irreversible change of its framework, which occurs during the CO<sub>2</sub> capture process. It was found that there is an irreversible chemical reaction among ZIF-8, water, and CO<sub>2</sub>, which creates both zinc carbonate (or zinc carbonate hydroxides) and single 2-methylimidazole crystals, and therefore the pore structure of ZIF-8 collapses. It is suggested therefore that care must be taken when using ZIF-8 or products containing ZIF-8 for gas capture, gas separation, or other applications where both water and acid gases coexist

    Large Ecosystem Service Benefits of Assisted Natural Regeneration

    Get PDF
    China manages the largest monoculture plantations in the world, with 24% being Chinese fir plantations. Maximizing the ecosystem services of Chinese fir plantations has important implications in global carbon cycle and biodiversity protection. Assisted natural regeneration (ANR) is a practice to convert degraded lands into more productive forests with great ecosystems services. However, the quantitative understanding of ANR ecosystem service benefits is very limited. We conducted a comprehensive field manipulation experiment to evaluate the ANR potentials. We quantified and compared key ecosystem services including surface runoff, sediment yield, dissolved organic carbon export, plant diversity, and aboveground carbon accumulation of ANR of secondary forests dominated by Castanopsis carlesii to that of Chinese fir and C. carlesii plantations. Our results showed that ANR of C. carlesii forest reduced surface runoff and sediment yield up to 50% compared with other young plantations in the first 3 years and substantially increased plant diversity. ANR also reduced the export of dissolved organic carbon by 60–90% in the first 2 years. Aboveground biomass of the young ANR forest was approximately 3–4 times of that of other young plantations, while aboveground biomass of mature ANR forests was approximately 1.4 times of that of mature Chinese fir plantations of the same age. If all Chinese fir plantations in China were replaced by ANR forests, potentially 0.7 Pg more carbon will be stored in aboveground in one rotation (25 years). The results indicate that ANR triggers positive feedbacks among soil and water conservation, biodiversity protection, and biomass accumulation and thereby enhances ecosystem services

    Genomes shed light on the evolution of Begonia, a mega‐diverse genus

    Get PDF
    Clarifying the evolutionary processes underlying species diversification and adaptation is a key focus of evolutionary biology. Begonia (Begoniaceae) is one of the most species-rich angiosperm genera with ~2,000 species, most of which are shade-adapted. Here, we present chromosome-scale genome assemblies for four species of Begonia (B. loranthoides, B. masoniana, B. darthvaderiana, and B. peltatifolia), and whole genome shot-gun data for an additional 74 Begonia representatives to investigate lineage evolution and shade adaptation of the genus. The four genome assemblies range in size from 331.75 Mb (B. peltatifolia) to 799.83 Mb (B. masoniana), and harbor 22,059 - 23,444 protein-coding genes. Synteny analysis revealed a lineage specific whole-genome duplication (WGD) that occurred just before the diversification of the Begonia. Functional enrichment of gene families retained after WGD highlight the significance of modified carbohydrate metabolism and photosynthesis possibly linked to shade-adaptation in the genus, which is further supported by expansions of gene families involved in light perception and harvesting. Phylogenomic reconstructions and genomics studies indicate that genomic introgression has also played a role in the evolution of Begonia. Overall, this study provides valuable genomic resources for Begonia and suggests potential drivers underlying the diversity and adaptive evolution of this mega-diverse clade

    Research on the Ranking of University Education based on Grey-TOPSIS-DEA Method

    No full text
    The University is the cradle of the higher education. In the college life, the college students continue to accept the new knowledge and continue to grow. Obviously, the level of the university education will be directly related to the growth for the college students. Therefore, it is an important job to evaluate and order the college education quality. In this paper, we combine the Grey theory, TOPSIS with DEA method. And we propose an improved Grey-TOPSIS-DEA model. Then, we use the model to evaluate the college education quality. Finally, we get the rankings of the college education. In the last part of this paper, we use the method to evaluate the education quality for different colleges. And we verify the validity of the method

    Research on the Ranking of University Education based on Grey-TOPSIS-DEA Method

    No full text

    Optimization of Ni/ZnZr Catalyst for Enhanced Syngas Yield in Catalytic Pyrolysis of Rice Straw

    Get PDF
    To enhance the catalytic performance of nickel-based catalysts and improve their efficiency in biomass pyrolysis, a nickel-based catalyst supported on a ZnZr composite carrier was synthesized using the sol-gel method. The morphological changes of the catalyst before and after the reaction were observed using X-ray diffraction, scanning electron microscopy, nitrogen gas adsorption, temperature-programmed reduction, and other methods to analyze its catalytic performance. A series of experiments were conducted to explore the optimal conditions for the catalyst's gas production, including carrier material ratios, loading amounts, residence time, and reaction temperature. The bimetallic carrier of Zn and Zr provided a higher specific surface area, allowing the metallic nickel to enter its mesopores. The synergistic effect of the bimetallic system facilitated the catalytic activity of nickel, significantly enhancing gas production. The maximum CO and H2 production were achieved at Zn/Zr = 6/4. The catalyst achieved an optimal gas yield of 507 mL/g at a residence time of 20 min and a reaction temperature of 800 °C, demonstrating strong stability

    DEVELOPMENT OF A NANO-Ni-La-Fe/Al2O3 CATALYST TO BE USED FOR SYN-GAS PRODUCTION AND TAR REMOVAL AFTER BIOMASS GASIFICATION

    No full text
    The objective of this study was to develop a supported tri-metallic catalyst (nano-Ni-La-Fe/γ-Al2O3) for tar removal in biomass steam gasification, to significantly enhance the quality of the produced gas. For this purpose, the supported tri-metallic catalysts were prepared by a deposition-precipitation (DP) method. Different analytical approaches were used to characterize the synthesized catalysts. The results showed that the prepared tri-metallic catalysts had an egg-shell structure with a specific surface area of 214.7 m2/g. The activity of the catalysts for gas production and tar removal in the process of biomass gasification was also investigated using a bench-scale combined fixed bed reactor. The experiments indicated that the tar yield after adding catalyst was reduced significantly and the efficiency of tar removal reached 99% for the biomass steam gasification at 800oC, while the gas yield after adding catalysts increased markedly and less coke was found over the catalyst. Meanwhile, the compositions of gas products before and after adding catalyst in the process also changed significantly; in particular, the content of hydrogen in catalytic steam gasification was improved by over 10 vol%. Therefore, using the prepared tri-metallic catalyst in biomass gasification can significantly improve the quality of the produced gas and efficiently eliminate the tar generation, preventing coke deposition on the catalyst surfaces, thus demonstrating a long lifetime of the catalyst
    corecore