2,922 research outputs found

    High-Performance Deep Ultraviolet Photodetector Based on NiO/β-Ga2O3 Heterojunction

    Get PDF
    Ultraviolet (UV) photodetector has attracted extensive interests due to its wide-ranging applications from defense technology to optical communications. The use of wide bandgap metal oxide semiconductor materials is of great interest in the development of UV photodetector due to their unique electronic and optical properties. In this work, deep UV photodetector based on NiO/β-Ga2O3 heterojunction was developed and investigated. The β-Ga2O3 layer was prepared by magnetron sputtering and exhibited selective orientation along the family of (2¯¯¯ 01) crystal plane after annealing. The photodetector demonstrated good performance with a high responsivity (R) of 27.43 AW−1 under a 245-nm illumination (27 μWcm−2) and the maximum detectivity (D*) of 3.14 × 1012 cmHz1/2 W−1, which was attributed to the p-NiO/n-β-Ga2O3 heterojunction

    Molecular-beam epitaxy of monolayer and bilayer WSe2: a scanning tunneling microscopy/spectroscopy study and deduction of exciton binding energy

    Get PDF
    Interest in two-dimensional (2D) transition-metal dichalcogenides (TMDs) has prompted some recent efforts to grow ultrathin layers of these materials epitaxially using molecular-beam epitaxy (MBE). However, growths of monolayer (ML) and bilayer (BL) WSe2—an important member of the TMD family—by the MBE method remain uncharted, probably because of the difficulty in generating tungsten fluxes from the elemental source. In this work, we present a scanning tunneling microscopy and spectroscopy (STM/S) study of MBE-grown WSe2 ML and BL, showing atomically flat epifilm with no domain boundary (DB) defect. This contrasts epitaxial MoSe2 films grown by the same method, where a dense network of the DB defects is present. The STS measurements of ML and BL WSe2 domains of the same sample reveal not only the bandgap narrowing upon increasing the film thickness from ML to BL, but also a band-bending effect across the boundary (step) between ML and BL domains. This band-bending appears to be dictated by the edge states at steps of the BL islands. Finally, comparison is made between the STS-measured electronic bandgaps with the exciton emission energies measured by photoluminescence, and the exciton binding energies in ML and BL WSe2 (and MoSe2) are thus estimated.postprin

    Strain in epitaxial high-index Bi2Se3(221) films grown by molecular-beam epitaxy

    Get PDF
    High-index Bi2Se3(221) film has been grown on In2Se3-buffered GaAs(001), in which a much retarded strain relaxation dynamics is recorded. The slow strain-relaxation process of in epitaxial Bi2Se3(221) can be attributed to the layered structure of Bi2Se3 crystal, where the epifilm grown along [221] is like a pile of weakly-coupled quintuple layer slabs stacked side-by-side on substrate. Finally, we reveal strong chemical bonding at the interface of Bi2Se3 and In2Se3 by plotting differential charge contour calculated by first-principle method. This study points to the feasibility of achieving strained TIs for manipulating the properties of topological systems.postprin

    Interface modification of clay and graphene platelets reinforced epoxy nanocomposites: a comparative study

    Get PDF
    The interface between the matrix phase and dispersed phase of a composite plays a critical role in influencing its properties. However, the intricate mecha-nisms of interface are not fully understood, and polymer nanocomposites are no exception. This study compares the fabrication, morphology, and mechanical and thermal properties of epoxy nanocomposites tuned by clay layers (denoted as m-clay) and graphene platelets (denoted as m-GP). It was found that a chemical modification, layer expansion and dispersion of filler within the epoxy matrix resulted in an improved interface between the filler mate-rial and epoxy matrix. This was confirmed by Fourier transform infrared spectroscopy and transmission electron microscope. The enhanced interface led to improved mechanical properties (i.e. stiffness modulus, fracture toughness) and higher glass transition temperatures (Tg) compared with neat epoxy. At 4 wt% m-GP, the critical strain energy release rate G1c of neat epoxy improved by 240 % from 179.1 to 608.6 J/m2 and Tg increased from 93.7 to 106.4 �C. In contrast to m-clay, which at 4 wt%, only improved the G1c by 45 % and Tg by 7.1 %. The higher level of improvement offered by m-GP is attributed to the strong interaction of graphene sheets with epoxy because the covalent bonds between the carbon atoms of graphene sheets are much stronger than silicon-based clay

    A decade of aging in healthy older adults: longitudinal findings on cerebrovascular and cognitive health

    Get PDF
    Research suggests an association between cerebrovascular health and cognitive decline, but previous work is limited by its cross-sectional nature or short ( 0.05). Although a decade of aging does not lead to deterioration in cerebral blood flow or autoregulation, our findings suggest that reductions in cerebral blood flow and increases in cerebrovascular resistance are associated with early subjective cognitive decline

    The RING-CH ligase K5 antagonizes restriction of KSHV and HIV-1 particle release by mediating ubiquitin-dependent endosomal degradation of tetherin

    Get PDF
    Tetherin (CD317/BST2) is an interferon-induced membrane protein that inhibits the release of diverse enveloped viral particles. Several mammalian viruses have evolved countermeasures that inactivate tetherin, with the prototype being the HIV-1 Vpu protein. Here we show that the human herpesvirus Kaposi's sarcoma-associated herpesvirus (KSHV) is sensitive to tetherin restriction and its activity is counteracted by the KSHV encoded RING-CH E3 ubiquitin ligase K5. Tetherin expression in KSHV-infected cells inhibits viral particle release, as does depletion of K5 protein using RNA interference. K5 induces a species-specific downregulation of human tetherin from the cell surface followed by its endosomal degradation. We show that K5 targets a single lysine (K18) in the cytoplasmic tail of tetherin for ubiquitination, leading to relocalization of tetherin to CD63-positive endosomal compartments. Tetherin degradation is dependent on ESCRT-mediated endosomal sorting, but does not require a tyrosine-based sorting signal in the tetherin cytoplasmic tail. Importantly, we also show that the ability of K5 to substitute for Vpu in HIV-1 release is entirely dependent on K18 and the RING-CH domain of K5. By contrast, while Vpu induces ubiquitination of tetherin cytoplasmic tail lysine residues, mutation of these positions has no effect on its antagonism of tetherin function, and residual tetherin is associated with the trans-Golgi network (TGN) in Vpu-expressing cells. Taken together our results demonstrate that K5 is a mechanistically distinct viral countermeasure to tetherin-mediated restriction, and that herpesvirus particle release is sensitive to this mode of antiviral inhibition

    HVOF-Deposited WCCoCr as Replacement for Hard Cr in Landing Gear Actuators

    Get PDF
    WCCoCr coatings deposited by HVOF can replace hard Cr on landing gear components. Powders with two different WC particle sizes (micro and nano-) and geometries have been employed to study the effects on the coating’s properties. Moreover, coatings produced employing two sets of parameters resulting in high and low flame temperatures have been evaluated. Minor differences in microstructure and morphology were observed for the two powders employing the same spraying parameters, but the nano-sized powder exhibited a higher spraying efficiency. However, more significant microstructural changes result when the low- and high-energy spray parameters are used. Moreover, results of various tests which include adhesion, wear, salt fog corrosion resistance, liquid immersion, and axial fatigue strength, indicate that the coatings produced with high-energy flame are similar in behavior. On the other hand, the nanostructured low-energy flame coating exhibited a significantly lower salt fog corrosion resistanc

    3D Printed Bioscaffolds for Developing Tissue-Engineered Constructs

    Get PDF
    Tissue engineering techniques enable the fabrication of tissue substitutes integrating cells, biomaterials, and bioactive compounds to replace or repair damaged or diseased tissues. Despite the early success, current technology is unable to fabricate reproducible tissue-engineered constructs with the structural and functional similarity of the native tissue. The recent development of 3D printing technology empowers the opportunities of developing biofunctional complex tissue substitutes via layer-by-layer fabrication of cell(s), biomaterial(s), and bioactive compound(s) in precision. In this chapter, the current development of fabricating tissue-engineered constructs using 3D bioprinting technology for potential biomedical applications such as tissue replacement therapy, personalized therapy, and in vitro 3D modeling for drug discovery will be discussed. The current challenges, limitations, and role of stakeholders to grasp the future success also will be highlighted

    The HY5-PIF regulatory module coordinates light and temperature control of photosynthetic gene transcription

    Get PDF
    The ability to interpret daily and seasonal alterations in light and temperature signals is essential for plant survival. This is particularly important during seedling establishment when the phytochrome photoreceptors activate photosynthetic pigment production for photoautotrophic growth. Phytochromes accomplish this partly through the suppression of phytochrome interacting factors (PIFs), negative regulators of chlorophyll and carotenoid biosynthesis. While the bZIP transcription factor long hypocotyl 5 (HY5), a potent PIF antagonist, promotes photosynthetic pigment accumulation in response to light. Here we demonstrate that by directly targeting a common promoter cis-element (G-box), HY5 and PIFs form a dynamic activation-suppression transcriptional module responsive to light and temperature cues. This antagonistic regulatory module provides a simple, direct mechanism through which environmental change can redirect transcriptional control of genes required for photosynthesis and photoprotection. In the regulation of photopigment biosynthesis genes, HY5 and PIFs do not operate alone, but with the circadian clock. However, sudden changes in light or temperature conditions can trigger changes in HY5 and PIFs abundance that adjust the expression of common target genes to optimise photosynthetic performance and growth
    corecore