73 research outputs found

    Roles of 17-AAG-induced molecular chaperones and Rma1 E3 ubiquitin ligase in folding and degradation of Pendrin

    Get PDF
    AbstractPendrin is a transmembrane chloride/anion exchanger highly expressed in thyroid, kidney, and inner ear. Endoplasmic reticulum (ER)-retention of improperly folded Pendrin mutants is considered as the major cause for Pendred syndrome. However, the folding and degradation mechanisms of Pendrin are poorly understood. Here, we report that treatment of 17-AAG, an Hsp90 inhibitor, facilitates the folding of Pendrin through heat shock transcription factor 1 (Hsf1)-dependent induction of molecular chaperones. Furthermore, we demonstrate that Rma1, an E3 ubiquitin ligase localized in the ER membrane, is involved in Pendrin degradation

    Regulation of acetate tolerance by small ORF-encoded polypeptides modulating efflux pump specificity in Methylomonas sp. DH-1

    Get PDF
    Abstract Background Methanotrophs have emerged as promising hosts for the biological conversion of methane into value-added chemicals, including various organic acids. Understanding the mechanisms of acid tolerance is essential for improving organic acid production. WatR, a LysR-type transcriptional regulator, was initially identified as involved in lactate tolerance in a methanotrophic bacterium Methylomonas sp. DH-1. In this study, we investigated the role of WatR as a regulator of cellular defense against weak organic acids and identified novel target genes of WatR. Results By conducting an investigation into the genome-wide binding targets of WatR and its role in transcriptional regulation, we identified genes encoding an RND-type efflux pump (WatABO pump) and previously unannotated small open reading frames (smORFs), watS1 to watS5, as WatR target genes activated in response to acetate. The watS1 to watS5 genes encode polypeptides of approximately 50 amino acids, and WatS1 to WatS4 are highly homologous with one predicted transmembrane domain. Deletion of the WatABO pump genes resulted in decreased tolerance against formate, acetate, lactate, and propionate, suggesting its role as an efflux pump for a wide range of weak organic acids. WatR repressed the basal expression of watS genes but activated watS and WatABO pump genes in response to acetate stress. Overexpression of watS1 increased tolerance to acetate but not to other acids, only in the presence of the WatABO pump. Therefore, WatS1 may increase WatABO pump specificity toward acetate, switching the general weak acid efflux pump to an acetate-specific efflux pump for efficient cellular defense against acetate stress. Conclusions Our study has elucidated the role of WatR as a key transcription factor in the cellular defense against weak organic acids, particularly acetate, in Methylomonas sp. DH-1. We identified the genes encoding WatABO efflux pump and small polypeptides (WatS1 to WatS5), as the target genes regulated by WatR for this specific function. These findings offer valuable insights into the mechanisms underlying weak acid tolerance in methanotrophic bacteria, thereby contributing to the development of bioprocesses aimed at converting methane into value-added chemicals.This work was supported by C1 gas refinery program through the National Research Foundation of Korea (NRF) funded by the Ministry of Science and ICT (MSIT) (2016M3D3A01913245)

    O2-tolerant CO dehydrogenase via tunnel redesign for the removal of CO from industrial flue gas

    Get PDF
    Ni???Fe carbon monoxide dehydrogenases (CODHs) are nearly diffusion-limited biocatalysts that oxidize CO. Their O2 sensitivity, however, is a major drawback for industrial applications. Here we compare the structures of a fast CODH with a high O2 sensitivity (ChCODH-II) and a slower CODH with a lower O2 sensitivity (ChCODH-IV) (Ch, Carboxydothermus hydrogenoformans). Some variants obtained by simple point mutations of the bottleneck residue (A559) in the gas tunnel showed 61???148-fold decreases in O2 sensitivity while maintaining high turnover rates. The variant structure A559W showed obstruction of one gas tunnel, and molecular dynamics supported the locked position of the mutated side chain in the tunnel. The variant was exposed to different gas mixtures, from simple synthetic gas to sophisticated real flue from a steel mill. Its catalytic properties remained unchanged, even at high O2 levels, and the efficiency was maintained for multiple cycles of CO detoxification/regeneration

    Efficient production of d-lactate from methane in a lactate-tolerant strain of Methylomonas sp. DH-1 generated by adaptive laboratory evolution

    Get PDF
    Background Methane, a main component of natural gas and biogas, has gained much attention as an abundant and low-cost carbon source. Methanotrophs, which can use methane as a sole carbon and energy source, are promising hosts to produce value-added chemicals from methane, but their metabolic engineering is still challenging. In previous attempts to produce lactic acid (LA) from methane, LA production levels were limited in part due to LA toxicity. We solved this problem by generating an LA-tolerant strain, which also contributes to understanding novel LA tolerance mechanisms. Results In this study, we engineered a methanotroph strain Methylomonas sp. DH-1 to produce d-lactic acid (d-LA) from methane. LA toxicity is one of the limiting factors for high-level production of LA. Therefore, we first performed adaptive laboratory evolution of Methylomonas sp. DH-1, generating an LA-tolerant strain JHM80. Genome sequencing of JHM80 revealed the causal gene watR, encoding a LysR-type transcription factor, whose overexpression due to a 2-bp (TT) deletion in the promoter region is partly responsible for the LA tolerance of JHM80. Overexpression of the watR gene in wild-type strain also led to an increase in LA tolerance. When d form-specific lactate dehydrogenase gene from Leuconostoc mesenteroides subsp. mesenteroides ATCC 8293 was introduced into the genome while deleting the glgA gene encoding glycogen synthase, JHM80 produced about 7.5-fold higher level of d-LA from methane than wild type, suggesting that LA tolerance is a critical limiting factor for LA production in this host. d-LA production was further enhanced by optimization of the medium, resulting in a titer of 1.19 g/L and a yield of 0.245 g/g CH4. Conclusions JHM80, an LA-tolerant strain of Methylomonas sp. DH-1, generated by adaptive laboratory evolution was effective in LA production from methane. Characterization of the mutated genes in JHM80 revealed that overexpression of the watR gene, encoding a LysR-type transcription factor, is responsible for LA tolerance. By introducing a heterologous lactate dehydrogenase gene into the genome of JHM80 strain while deleting the glgA gene, high d-LA production titer and yield were achieved from methane.This work was supported by C1 Gas Refnery Program through the National Research Foundation of Korean (NRF) funded by the Ministry of Science and ICT (2016M3D3A01913245)

    Granular Assembly of α-Synuclein Leading to the Accelerated Amyloid Fibril Formation with Shear Stress

    Get PDF
    α-Synuclein participates in the Lewy body formation of Parkinson's disease. Elucidation of the underlying molecular mechanism of the amyloid fibril formation is crucial not only to develop a controlling strategy toward the disease, but also to apply the protein fibrils for future biotechnology. Discernable homogeneous granules of α-synuclein composed of approximately 11 monomers in average were isolated in the middle of a lag phase during the in vitro fibrillation process. They were demonstrated to experience almost instantaneous fibrillation during a single 12-min centrifugal membrane-filtration at 14,000×g. The granular assembly leading to the drastically accelerated fibril formation was demonstrated to be a result of the physical influence of shear force imposed on the preformed granular structures by either centrifugal filtration or rheometer. Structural rearrangement of the preformed oligomomeric structures is attributable for the suprastructure formation in which the granules act as a growing unit for the fibril formation. To parallel the prevailing notion of nucleation-dependent amyloidosis, we propose a double-concerted fibrillation model as one of the mechanisms to explain the in vitro fibrillation of α-synuclein, in which two consecutive concerted associations of monomers and subsequent oligomeric granular species are responsible for the eventual amyloid fibril formation

    Why Are Outcomes Different for Registry Patients Enrolled Prospectively and Retrospectively? Insights from the Global Anticoagulant Registry in the FIELD-Atrial Fibrillation (GARFIELD-AF).

    Get PDF
    Background: Retrospective and prospective observational studies are designed to reflect real-world evidence on clinical practice, but can yield conflicting results. The GARFIELD-AF Registry includes both methods of enrolment and allows analysis of differences in patient characteristics and outcomes that may result. Methods and Results: Patients with atrial fibrillation (AF) and ≄1 risk factor for stroke at diagnosis of AF were recruited either retrospectively (n = 5069) or prospectively (n = 5501) from 19 countries and then followed prospectively. The retrospectively enrolled cohort comprised patients with established AF (for a least 6, and up to 24 months before enrolment), who were identified retrospectively (and baseline and partial follow-up data were collected from the emedical records) and then followed prospectively between 0-18 months (such that the total time of follow-up was 24 months; data collection Dec-2009 and Oct-2010). In the prospectively enrolled cohort, patients with newly diagnosed AF (≀6 weeks after diagnosis) were recruited between Mar-2010 and Oct-2011 and were followed for 24 months after enrolment. Differences between the cohorts were observed in clinical characteristics, including type of AF, stroke prevention strategies, and event rates. More patients in the retrospectively identified cohort received vitamin K antagonists (62.1% vs. 53.2%) and fewer received non-vitamin K oral anticoagulants (1.8% vs . 4.2%). All-cause mortality rates per 100 person-years during the prospective follow-up (starting the first study visit up to 1 year) were significantly lower in the retrospective than prospectively identified cohort (3.04 [95% CI 2.51 to 3.67] vs . 4.05 [95% CI 3.53 to 4.63]; p = 0.016). Conclusions: Interpretations of data from registries that aim to evaluate the characteristics and outcomes of patients with AF must take account of differences in registry design and the impact of recall bias and survivorship bias that is incurred with retrospective enrolment. Clinical Trial Registration: - URL: http://www.clinicaltrials.gov . Unique identifier for GARFIELD-AF (NCT01090362)

    Risk profiles and one-year outcomes of patients with newly diagnosed atrial fibrillation in India: Insights from the GARFIELD-AF Registry.

    Get PDF
    BACKGROUND: The Global Anticoagulant Registry in the FIELD-Atrial Fibrillation (GARFIELD-AF) is an ongoing prospective noninterventional registry, which is providing important information on the baseline characteristics, treatment patterns, and 1-year outcomes in patients with newly diagnosed non-valvular atrial fibrillation (NVAF). This report describes data from Indian patients recruited in this registry. METHODS AND RESULTS: A total of 52,014 patients with newly diagnosed AF were enrolled globally; of these, 1388 patients were recruited from 26 sites within India (2012-2016). In India, the mean age was 65.8 years at diagnosis of NVAF. Hypertension was the most prevalent risk factor for AF, present in 68.5% of patients from India and in 76.3% of patients globally (P < 0.001). Diabetes and coronary artery disease (CAD) were prevalent in 36.2% and 28.1% of patients as compared with global prevalence of 22.2% and 21.6%, respectively (P < 0.001 for both). Antiplatelet therapy was the most common antithrombotic treatment in India. With increasing stroke risk, however, patients were more likely to receive oral anticoagulant therapy [mainly vitamin K antagonist (VKA)], but average international normalized ratio (INR) was lower among Indian patients [median INR value 1.6 (interquartile range {IQR}: 1.3-2.3) versus 2.3 (IQR 1.8-2.8) (P < 0.001)]. Compared with other countries, patients from India had markedly higher rates of all-cause mortality [7.68 per 100 person-years (95% confidence interval 6.32-9.35) vs 4.34 (4.16-4.53), P < 0.0001], while rates of stroke/systemic embolism and major bleeding were lower after 1 year of follow-up. CONCLUSION: Compared to previously published registries from India, the GARFIELD-AF registry describes clinical profiles and outcomes in Indian patients with AF of a different etiology. The registry data show that compared to the rest of the world, Indian AF patients are younger in age and have more diabetes and CAD. Patients with a higher stroke risk are more likely to receive anticoagulation therapy with VKA but are underdosed compared with the global average in the GARFIELD-AF. CLINICAL TRIAL REGISTRATION-URL: http://www.clinicaltrials.gov. Unique identifier: NCT01090362

    Efficient production of acetoin in Saccharomyces cerevisiae by disruption of 2,3-butanediol dehydrogenase and expression of NADH oxidase

    No full text
    Acetoin is widely used in food and cosmetic industry as taste and fragrance enhancer. For acetoin production in this study, Saccharomyces cerevisiae JHY605 was used as a host strain, where the production of ethanol and glycerol was largely eliminated by deleting five alcohol dehydrogenase genes (ADH1, ADH2, ADH3, ADH4, and ADH5) and two glycerol 3-phosphate dehydrogenase genes (GPD1 and GPD2). To improve acetoin production, acetoin biosynthetic genes from Bacillus subtilis encoding alpha-acetolactate synthase (AlsS) and alpha-acetolactate decarboxylase (AlsD) were overexpressed, and BDH1 encoding butanediol dehydrogenase, which converts acetoin to 2,3-butanediol, was deleted. Furthermore, by NAD(+) regeneration through overexpression of water-forming NADH oxidase (NoxE) from Lactococcus lactis, the cofactor imbalance generated during the acetoin production from glucose was successfully relieved. As a result, in fed-batch fermentation, the engineered strain JHY617-SDN produced 100.1 g/L acetoin with a yield of 0.44 g/g glucose.Y
    • 

    corecore