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Pendrin is a transmembrane chloride/anion exchanger highly expressed in thyroid, kidney, and
inner ear. Endoplasmic reticulum (ER)-retention of improperly folded Pendrin mutants is consid-
ered as the major cause for Pendred syndrome. However, the folding and degradation mechanisms
of Pendrin are poorly understood. Here, we report that treatment of 17-AAG, an Hsp90 inhibitor,
facilitates the folding of Pendrin through heat shock transcription factor 1 (Hsf1)-dependent induc-
tion of molecular chaperones. Furthermore, we demonstrate that Rma1, an E3 ubiquitin ligase local-

ized in the ER membrane, is involved in Pendrin degradation.
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1. Introduction

Pendrin is a transmembrane protein exchanging extracellular
Cl~ against intracellular monovalent anions such as I-, HCO3™,
OH™, and formate in the apical region of thyroid folliculocytes, kid-
ney cortex, and inner ear [1-3]. Mutations in SLC26A4 gene encod-
ing Pendrin cause Pendred syndrome characterized by recessive
congenital hearing impairment, thyroid goiter, and partial defects
in iodide organification [4,5]. Overall Pendred syndrome comprises
up to 10% of all congenital hearing impairments [6-8].

Retention of improperly folded Pendrin mutants in the endo-
plasmic reticulum (ER) has been suggested as the major patholog-
ical mechanism for Pendred syndrome [9,10]. Each Pendrin mutant
shows a different level of folding defect, which can be inferred by
its cellular localization, N-glycosylation level, and the degree of
folding-rescue by low temperature incubation [11]. Like other
transmembrane proteins, ER-retained misfolded Pendrin is
believed to be degraded by ER-associated degradation (ERAD),
which involves ubiquitylation, retro-translocation to the cyto-
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plasm, and eventual degradation by the proteasome [12,13]. How-
ever, the molecular details of folding and degradation of Pendrin
have not yet been investigated.

Here, we report that inhibition of Hsp90 activity by 17-AAG
(17-allylamino-17-demethoxygeldanamycin) treatment increases
the stability of Pendrin through Hsfl-dependent induction of
various molecular chaperones. In addition, ER-resident E3 ubiqui-
tin ligase Rma1 is shown to play an important role in Pendrin deg-
radation. However, cytosolic ubiquitin ligase CHIP seems to exert
little effect on Pendrin degradation. This is a first study to under-
stand the roles of molecular chaperones and ubiquitin ligases in
folding and degradation of Pendrin, which might contribute to
developing strategies for curing Pendred syndrome.

2. Materials and methods
2.1. Plasmids

pCMV-Myc vectors containing cDNAs of Pendrin (SLC26A4) wild
type and mutants (M147V, L236P, and H723R) were kindly
provided by Dr. M.G. Lee (Yonsei University, College of Medicine,
Seoul, Korea) [11]. To generate plasmids containing Pendrin trun-
cation mutants, PCR-amplified Pendrin cDNA fragments (Pen-
drinq_i6s, Pendrin;_s34, and Pendirn,_sy,), were cloned into the
Xhol and Notl sites of pPCMV-Myc. Human Rma1l cDNA clones were
generated by RT-PCR using mRNA isolated from HEK293 cells. The
PCR products were cloned into the Kpnl and Notl sites of
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pcDNA3.1-NFlag, which was generated by inserting a flag-tag se-
quence at the Nhel site of pcDNA3.1 (Invitrogen).

2.2. Cell culture and transfection

Human embryonic kidney 293 (HEK293) and HeLa cells were
maintained in DMEM medium supplemented with 10% fetal bovine
serum and 1% penicillin-streptomycin. Plasmids or siRNA duplexes
were transfected into cells by using Lipofectamine2000 (Invitro-
gen). For siRNA, cells were transfected with 100 pmol of siRNA du-
plex targeted to Hsf1 (5'-CAGGUUGUUCAUAGUCAGAAU-3'), Rma1l
(5'-GCGACCUUCGAAUGUAAUA-3') and CHIP (5’-UGCCGCCACUAU-
CUGUGUAAU-3'). Scrambled siRNA duplex (Bioneer) was used as a
control.

2.3. Immunoblotting

Harvested HEK293 and HeLa cells were lysed with a lysis buffer
containing 50 mM Tris-HCl (pH 7.4), 100 mM NaCl, 2 mM EDTA,
and 1% NP-40 supplemented with 1 mM PMSF, and 1/1000 prote-
ase inhibitor cocktail (Calbiochem) for 30 min at 4 °C. Following
SDS-PAGE, immunoblotting was performed by using antibodies
against Myc (Santa Cruz Biotechnology), Flag (Cell Signalling),
B-tubulin (Santa Cruz Biotechnology), Hsp70 (Stressgen), Hsfl
(Cell Signalling), CHIP (Cell Signalling), Rma1l (Santa Cruz Biotech-
nology), and the chemiluminescence signals were detected
and quantified by chemiluminescence image equipment
(Syngene).

2.4. Immunofluorescence microscopy

Hela cells expressing Myc-Pendrin wild type and H723R were
seeded into incubation chamber pretreated with poly p-lysine for
4 h. 24 h after transfection of the expression vectors, 50 nM of
17-AAG was treated using 0.25% DMSO as a control. After 24 h,
cells were fixed by 4% paraformaldehyde for 20 min at 4 °C, and
then 0.25% Triton X-100 was added into the fixed cells for antibody
permeability. Primary antibody against Myc was incubated for 2 h
at 4 °C, and then FITC-labeled secondary antibody was added. After
staining nucleus with DAPI for 1 min, cellular localizations of
FITC-labeled Myc-Pendrin were analyzed by confocal microscope
(Nikon, Eclipse TE 300).
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3. Results

3.1. Treatment of 17-AAG, an Hsp90 inhibitor, increases the stability of
Pendrin

One of the predicted topologies of Pendrin suggests 12 trans-
membrane domains with both N-terminal and C-terminal ends
facing cytosol, although it needs further experimental verification
[8,14,15], and Pendrin has two N-glycosylation sites at Asn167
and Asn172 residues [16] (Fig. 1). As previously reported [11],
Myc-tagged Pendrin transiently expressed in HEK293 cells showed
at least three bands on SDS-PAGE, which are designated as A, B,
and C forms (Fig. 2A). The A form is predicted to be an unglycosy-
lated form of Pendrin. The B form is immaturely glycosylated Pen-
drin in the ER and the C form represents maturely glycosylated
Pendrin on the plasma membrane.

Hsp90 has been shown to play an important role in the folding
of cystic fibrosis transmembrane conductance regulator (CFTR), a
Cl~ channel whose folding defects are implicated in cystic fibrosis
[17]. Therefore, we asked whether Hsp90 is also involved in the
folding of Pendrin. To address this question, we investigated the ef-
fect of Hsp90 inhibitor, 17-AAG, on the steady state level of Pen-
drin protein. Pendrin was expected to be degraded by 17-AAG
treatment if Pendrin is a client protein of Hsp90 like CFTR. How-
ever, in contrast to our expectation, when HEK293 cells expressing
Myc-Pendrin were treated with 17-AAG for 24 h, the A and B
forms, but not C form, were stabilized in a dose dependent manner
(Fig. 2A and E). Induction of Hsp70 by 17-AAG was monitored as an
indicator of Hsf1l activation. Since Hsp90 inhibits Hsf1 transcrip-
tion factor, inhibition of Hsp90 activates Hsf1, which in turn leads
to the induction of Hsf1 target genes most of which encode molec-
ular chaperones. 17-AAG treatment did not affect the transcript le-
vel of Pendrin, which was detected by qRT-PCR (Supplementary
Fig. 1). Moreover, Myc-PP5 expressed from the same CMV pro-
moter-controlled expression vector did not show any change in
PP5 protein levels upon 17-AAG treatment (Supplementary
Fig. 2). Therefore, 17-AAG-dependent increase in the Pendrin pro-
tein levels seems not to be caused by the effect of 17-AAG on tran-
scription or translation of the Pendrin gene.

We also examined the effect of 17-AAG on three Pendrin mu-
tants (M147V, L236P, and H723R) which were shown to have dif-
ferent levels of folding defects [11]. Pendrin M147V and H723R
showed reduced levels of C forms compared with wild type
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Fig. 1. Schematic diagram of the putative topology of Pendrin. The putative topology of Pendrin is shown as previously reported [16]. N-glycosylation sites are denoted as ‘Y’.
The mutation sites of Pendrin M147V, L236P, and H723R are indicated as open circles, and closed circles designate the locations where stop codons are introduced to generate
truncation mutants. STAS is a sulfate transporter and antisigma factor antagonist domain.
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Fig. 2. Stabilization of Pendrin by 17-AAG in HEK293 cells. Myc-tagged Pendrin wild type (A) and mutants, M147V (B), L236P (C), and H723R (D) were transiently expressed
in HEK293 cells, and the indicated amount of 17-AAG was treated for 24 h after transfection. 0.25% DMSO was treated as a control. Expression levels of Myc-Pendrin, Hsp70,
and B-tubulin were detected by immunoblotting. A, B, and C indicate unglycosylated, immaturely glycosylated, and maturely glycosylated forms of Pendrin, respectively. (E)
The relative amounts of wild type and mutant Pendrin B forms, and wild type C form after treatment with 0.25% DMSO (gray bar) or 5 uM 17-AAG (black bar) were quantified
from three independent experiments. The quantification values of Pendrin were normalized to B-tubulin. (F) Stabilization of Pendrin truncation mutants by 17-AAG.

Transfected cells were treated for 24 h with 5 uM 17-AAG or 0.25% DMSO as a control.

(Fig. 2B and D), and L236P, having the most severe folding defects,
did not generate any mature C form and showed higher level of A
form compared with wild type or other mutants (Fig. 2C). 17-AAG
treatment stabilized the A and B forms of Pendrin M147V and
H723R, but not L236P (Fig. 2B-E). Neither wild type nor the mu-
tants showed noticeable changes in the stability of C forms upon
17-AAG treatment. Therefore, Hsp90 inhibition might induce par-
tial folding-rescue of Pendrin proteins, and its effect seems to be
different depending on the folding status of Pendrin.

To map the specific regions of Pendrin where the stability is af-
fected by 17-AAG, Pendrin truncation mutants were generated and

expressed in HEK293 cells (Fig. 1). 17-AAG treatment stabilized all
these truncation mutants, indicating that 17-AAG affects Pendrin
stability from the early stage of Pendrin synthesis (Fig. 2F).

Since different cell types have different cellular environments
including the chaperone system [18], the effect of 17-AAG treat-
ment on Pendrin stability was also examined in human cervical
cancer cell line HeLa cells. Myc-tagged Pendrin, transiently ex-
pressed in HeLa cells, exhibited higher levels of C form than either
the A or B form, and 17-AAG treatment led to a prominent increase
in the C form (Fig. 3A). These results might be caused by higher
folding capacity of Hela cells for Pendrin compared with HEK293
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cells. On the other hand, lower Pendrin expression levels derived
from lower transfection efficiency of HeLa than HEK293 cells could
also possibly contribute to the efficient folding of Pendrin in HeLa
cells.

We also examined the effects of 17-AAG on the folding of Pen-
drin mutants, M147V and H723R, in HelLa cells. 17-AAG treatment
not only stabilized the A and B forms of Pendrin H723R, but also
partly rescued this mutant to the mature C form (Fig. 3B). Whereas,
Pendrin M147V, having stronger folding defects than H723R, failed
to generate the C form from the increased pool of A and B forms
(Fig. 3B). Next, we tested whether the C form of Pendrin H723R in-
creased by 17-AAG treatment actually reflected the proteins
reached to the plasma membrane. Indirect immunofluorescence
microscopy revealed that Pendrin wild type was localized in the
plasma membrane as well as distributed throughout the cytosol
as small aggregates (Fig. 3C). In contrast, Pendrin H723R was re-
tained in the perinuclear region in the form of aggregates, reflect-
ing the ER-retention of the misfolded mutant proteins (Fig. 3C). 17-
AAG treatment noticeably induced plasma membrane localization
of Pendrin H723R, whereas the membrane localization of wild type
Pendrin was not significantly changed by 17-AAG (Fig. 3C). There-
fore, depending on cellular environment, 17-AAG treatment can
facilitate the folding and exit of Pendrin from the ER to generate
a maturely glycosylated form. These results suggest that the 17-
AAG-dependent increase in Pendrin stability might involve the
improvement of protein folding rather than the simple accumula-
tion of misfolded proteins by inhibiting their degradation.

3.2. Hsf1 mediates the 17-AAG-dependent stabilization of Pendrin

Since 17-AAG treatment seems to assist Pendrin folding, we
hypothesized that the 17-AAG effect might be mediated by the
induction of molecular chaperones through the activation of Hsf1
rather than by a direct effect of the reduced Hsp90 chaperone
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activity. To test this possibility, we investigated the effect of Hsf1
depletion on the 17-AAG-dependent stabilization of Pendrin.
When HEK293 cells were co-transfected with Hsf1 siRNA and Pen-
drin expression vector, 17-AAG-dependent Pendrin stabilization
was diminished, concomitant with the reduction of Hsp70 induc-
tion (Fig. 4). Upon 17-AAG treatment, the Pendrin B form was sta-
bilized by only 1.5-fold in Hsf1 knockdown cells compared with a
stabilization by 2.5-fold in cells transfected with scrambled siRNA.
Therefore, the Hsfl-dependent induction of various molecular
chaperones might be mainly responsible for the Pendrin stabiliza-

Myc-Pendrin WT

NC + + - -
Hsf1 siRNA - - + +
17-AAG - + - +
. —-— =C
anti-Myc | B o = B
A
anti-Hsf1 -
anti-Hsp70 | — ———— -.—|

anti-B-tubulin

% total Hsf1 100 100 17 28

Fig. 4. Hsfl-dependent induction of molecular chaperones is responsible for
Pendrin stabilization upon 17-AAG treatment. HEK293 cells were co-transfected
with Myc-Pendrin expression vector and Hsf1 siRNA duplex. Scrambled siRNA was
used as a negative control (NC). After 24 h of transfection, cells were treated with
5 UM 17-AAG for 24 h and protein expression levels were analyzed by immuno-
blotting. The relative amounts of Hsf1 normalized to B-tubulin are indicated.
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Fig. 3. Effect of 17-AAG on Pendrin stability in HeLa cells. (A) Myc-Pendrin was transiently expressed in HeLa cells and the expression levels of Pendrin were detected after
treatment of the indicated amount of 17-AAG for 24 h. (B) 5 uM of 17-AAG was treated for 24 h to HeLa cells transfected with expression vectors for Myc-Pendrin M147V or
H723R. (C) Localizations of Myc-Pendrin wild type and H723R were detected by immunofluorescence microscopy with or without the treatment of 50 nM 17-AAG for 24 h

(green). Nucleus was stained with DAPI (blue).
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tion by 17-AAG. To identify specific molecular chaperones respon-
sible for Pendrin stabilization, we selected the major molecular
chaperone Hsp70 and its Hsp40 cochaperones, Hdj1 and Hdj2 as
candidates among the known Hsf1 targets. However, overexpres-
sion of Hsp70, Hdj1, and Hdj2 alone or in combination did not in-
duce significant changes in Pendrin stability (data not shown).
Therefore, the 17-AAG effect might reflect coordinated actions of
multiple chaperones yet to be identified.

3.3. E3 ubiquitin ligase Rmal is involved in Pendrin degradation

Misfolded Pendrin is believed to be degraded by ERAD, but E3
ubiquitin ligases mediating the process have not yet been identi-
fied. Among the known E3 ubiquitin ligases involved in ERAD, we
first examined whether Rmal functions in Pendrin degradation.
Rma1, which forms ER membrane-associated ubiquitin ligase com-
plex with Ubc6e and Derlin-1, has been shown to promote prote-
asomal degradation of CFTR [19]. Overexpression of Rmal
reduced the steady state levels of Pendrin WT and H723R, but
not M147V and L236P (Fig. 5A and C). In addition, siRNA reduction
of Rma1l by around 49% slightly increased the amount of Pendrin
wild type B form, suggesting that Rma1 is involved in Pendrin deg-
radation (Fig. 5B and C). Pendrin mutants having higher folding de-
fects seem not to be susceptible to the changes in Rmal levels
under our experimental conditions. To find out specific regions of
Pendrin where Rma1 recognizes for degradation, we also investi-
gated the effect of Rmal on the stability of Pendrin truncation mu-
tants. Overexpression of Rmal decreased the protein levels of
Pendrin;_334 and Pendrin;_ss, as well as wild type, but not Pen-
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drin;_;6¢ (Fig. 5D). Therefore, Rmal might recognize folding de-
fects after the synthesis of the third transmembrane domain
(Fig. 1).

Next, we investigated the role for CHIP in Pendrin degradation.
CHIP is a cytosolic E3 ubiquitin ligase which interacts with Hsp70/
Hsc70 and Hsp90 through its tetratricopeptide repeat (TPR) motifs,
and is also known to regulate CFTR degradation [19,20]. However,
neither overexpression nor depletion of CHIP significantly changed
the steady state levels of Pendrin (Fig. 6A-C). Therefore, unlike
Rmat, CHIP might play little role in Pendrin degradation.

4. Discussion

It has been suggested that ER-retention of improperly folded
Pendrin is the major cause of Pendred syndrome. Although Pen-
dred disease comprises up to 10% of all congenital hearing deficien-
cies, the folding and degradation mechanisms of Pendrin are
largely unknown. Our study is a first attempt to elucidate the roles
of molecular chaperones and E3 ubiquitin ligases involved in Pen-
drin folding and degradation.

Initially, we used 17-AAG, an Hsp90 inhibitor, to test whether
Pendrin is a client protein of Hsp90 similar to CFTR. However, Pen-
drin was stabilized by 17-AAG treatment unlike typical Hsp90 cli-
ent proteins which are degraded upon Hsp90 inhibition. The
Pendrin-stabilization effect of 17-AAG was abolished by siRNA
reduction of Hsf1, indicating that induction of various molecular
chaperones is mainly responsible for the 17-AAG-dependent Pen-
drin stabilization. Since overexpression of Hsp70 and its Hsp40
cochaperones, Hdj1 and Hdj2, failed to deliver the stabilization ef-
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Fig. 5. Effect of Rmal on Pendrin stability. (A and D) Flag-Rma1l was overexpressed with Myc-Pendrin or its mutants in HEK293 cells. After 24 h of transfection, protein levels
were analyzed by immunoblotting. (B) Cellular Rmal was depleted by Rma1 siRNA duplex 24 h before the transfection of expression vector for Myc-Pendrin wild type or its
mutants. After 24 h of further incubation, protein expression levels were detected by immunoblotting. The relative amounts of Rma1l normalized to p-tubulin are indicated.
(C) The relative amounts of Pendrin WT B forms upon overexpression or depletion of Rmal were quantified from three independent experiments. **P < 0.01; *P < 0.05

(unpaired Student’s t-test).
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Fig. 6. Effect of CHIP on Pendrin stability. (A) HEK293 cells were co-transfected
with expression vectors for Flag-CHIP and Myc-Pendrin for 24 h, and protein
expression levels were detected by immunoblotting. (B) Cellular CHIP was depleted
by siRNA for 24 h before the transfection of expression vector for Myc-Pendrin, and
then further incubated for 24 h to detect protein expression levels. The relative
amounts of CHIP normalized to B-tubulin are indicated. (C) The relative amounts of
Pendrin WT B forms upon overexpression or depletion of CHIP were quantified from
three independent experiments.

fect of Pendrin unlike the previous report demonstrating their roles
in CFTR stabilization [21], balanced actions of other chaperones
might be responsible for proper Pendrin folding.

Pendrin expressed in HeLa cells displayed higher levels of Pen-
drin folding and processing than that expressed in HEK293 cells,
possibly reflecting the differences in folding or cellular trafficking
capacity of each cell type. Although 17-AAG could hardly rescue
the B form of wild type or mutant Pendrin to the C form in
HEK293 cells, 17-AAG could partially rescue the folding defects
of H723R mutant to generate the membrane-localized C form in
Hela cells. These results demonstrate that Pendrin folding and traf-
ficking to the plasma membrane can be altered by changes in the
cellular environment, and Hsp90 inhibitors can facilitate Pendrin
folding by optimizing the cellular folding capacity. Previously,
low temperature incubation, protein synthesis inhibitors, and
chemical chaperones were also shown to assist Pendrin folding
[11,13]. Although Hsp90 inhibitors are mainly considered as prom-
ising anti-cancer drugs targeting many oncogenic Hsp90 client
proteins, they also have a pharmacological potential to treat neuro-
degenerative diseases by acting as inducers of molecular chaper-
ones [22,23]. It has been shown that Hsp90 inhibitors can
alleviate neurodegenerative diseases such as Huntingtun'’s disease,
tauopathy, and Parkinson’s disease by inhibiting protein aggrega-
tion [24-26]. Our results suggest that Hsp90 inhibitors might also
have a potential to be employed to cure Pendred syndrome.

We examined the roles for Rmal and CHIP E3 ubiquitin ligases,
which have been known to degrade improperly folded CFTR, in
degradation of Pendrin [19,20]. Our Rmal overexpression and siR-
NA experiments suggest that the ER-resident Rmal may be in-
volved in Pendrin degradation by recognizing its folding defects

after the synthesis of the third transmembrane domain. On the
other hand, it was difficult to detect clear effect of CHIP on Pendrin
degradation. Compared with CFTR, Pendrin is predicted to have
smaller domains exposed to cytosol, which might be partly related
to the minor effects of the cytosolic ubiquitin ligase CHIP and cyto-
solic molecular chaperone Hsp90 on Pendrin stability.

In summary, we found that 17-AAG, an Hsp90 inhibitor, has a
therapeutic potential to rescue Pendrin folding defects through
the activation of Hsfl. The folding of Pendrin might be regulated
by the balanced actions of multiple components of chaperone sys-
tem and ERAD machinery, which are waiting for further investiga-
tion. Our study to understand the molecular mechanisms of
Pendrin folding and degradation would serve as a first step to de-
velop curing strategies for Pendred syndrome.
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