11 research outputs found

    Reply to comment by Karnauskas et al. on "Equatorial Pacific coral geochemical records show recent weakening of the Walker circulation"

    Get PDF
    In our paper describing a new coral record from Butaritari, we hypothesized that comparing the temporal trends in our records to coral records from farther east in the equatorial Pacific may support the evidence for a weakening of a Walker circulation, documented elsewhere in the literature [Power and Smith, 2007; Tokinaga et al., 2012]. Weakening of the Walker circulation is expected under global warming due to an imbalance in the rate of change in different aspects of the hydrological cycle [Vecchi and Soden, 2007]. We thank Karnauskas et al. [2015] for recognizing the value of our Butaritari coral climate reconstruction, and we appreciate their critique of our study. The Karnauskas et al. [2015] analyses strengthen our argument regarding the utility of interisland coral-proxy derived sea surface temperature (SST) gradients as a Walker circulation metric, but we disagree with their interpretation of decadal variability in our records. Here we provide additional analyses, which confirm that our reconstruction [Carilli et al., 2014] shows a long-term weakening of the Walker circulation over 1972-1998. We also document that significant decadal variations in Walker circulation strength, and for particular choices of start and end years over which trends are calculated, are able to show slight Walker strengthening. Overall, we conclude that Walker circulation variations are more nuanced than either our original publication [Carilli et al., 2014] or the subsequent Karnauskas et al. [2015] comment would suggest. Karnauskas et al. [2015] also provide a detailed analysis of Equatorial Undercurrent (EUC) activity near the Gilbert Islands and argue that the EUC does not strongly affect Butaritari. Our original publication did not claim to find significant EUC/Butaritari linkages, and we appreciate the diligence of Karnauskas et al. [2015] for ruling this out as a possibility

    Equatorial Pacific coral geochemical records show recent weakening of the Walker Circulation

    Get PDF
    Equatorial Pacific ocean-atmosphere interactions affect climate globally, and a key component of the coupled system is the Walker Circulation, which is driven by sea surface temperature (SST) gradients across the equatorial Pacific. There is conflicting evidence as to whether the SST gradient and Walker Circulation have strengthened or weakened over the late twentieth century. We present new records of SST and sea surface salinity (SSS) spanning 1959-2010 based on paired measurements of Sr/Ca and δ18O in a massive Porites coral from Butaritari atoll in the Gilbert Islands, Republic of Kiribati, in the central western equatorial Pacific. The records show 2-7 year variability correlated with the El Niño-Southern Oscillation (ENSO) and corresponding shifts in the extent of the Indo-Pacific Warm Pool, and decadal-scale signals related to the Pacific Decadal Oscillation and the Pacific Warm Pool Index. In addition, the Butaritari coral records reveal a small but significant increase in SST (0.39°C) from 1959 to 2010 with no accompanying change in SSS, a trend that persists even when ENSO variability is removed. In contrast, larger increases in SST and SSS are evident in coral records from the equatorial Pacific Line Islands, located east of Butaritari. Taken together, the equatorial Pacific coral records suggest an overall reduction in the east-west SST and SSS gradient over the last several decades, and a recent weakening of the Walker Circulation

    Reply to comment by Karnauskas et al. on Equatorial Pacific coral geochemical records show recent weakening of the Walker circulation

    Get PDF
    In our paper describing a new coral record from Butaritari, we hypothesized that comparing the temporal trends in our records to coral records from farther east in the equatorial Pacific may support the evidence for a weakening of a Walker circulation, documented elsewhere in the literature [Power and Smith, 2007; Tokinaga et al., 2012]. Weakening of the Walker circulation is expected under global warming due to an imbalance in the rate of change in different aspects of the hydrological cycle [Vecchi and Soden, 2007]. Here we provide additional analyses, which confirm that our reconstruction [Carilli et al., 2014] shows a long-term weakening of the Walker circulation over 1972-1998. We also document that significant decadal variations in Walker circulation strength, and for particular choices of start and end years over which trends are calculated, are able to show slight Walker strengthening. Overall, we conclude that Walker circulation variations are more nuanced than either our original publication [Carilli et al., 2014] or the subsequent Karnauskas et al. [2015] comment would suggest. Karnauskas et al. [2015] also provide a detailed analysis of Equatorial Undercurrent (EUC) activity near the Gilbert Islands and argue that the EUC does not strongly affect Butaritari. Our original publication did not claim to find significant EUC/Butaritari linkages, and we appreciate the diligence of Karnauskas et al. [2015] for ruling this out as a possibility

    Reply to comment by Karnauskas et al. on "Equatorial Pacific coral geochemical records show recent weakening of the Walker circulation"

    No full text
    In our paper describing a new coral record from Butaritari, we hypothesized that comparing the temporal trends in our records to coral records from farther east in the equatorial Pacific may support the evidence for a weakening of a Walker circulation, documented elsewhere in the literature [Power and Smith, 2007; Tokinaga et al., 2012]. Weakening of the Walker circulation is expected under global warming due to an imbalance in the rate of change in different aspects of the hydrological cycle [Vecchi and Soden, 2007]. We thank Karnauskas et al. [2015] for recognizing the value of our Butaritari coral climate reconstruction, and we appreciate their critique of our study. The Karnauskas et al. [2015] analyses strengthen our argument regarding the utility of interisland coral-proxy derived sea surface temperature (SST) gradients as a Walker circulation metric, but we disagree with their interpretation of decadal variability in our records. Here we provide additional analyses, which confirm that our reconstruction [Carilli et al., 2014] shows a long-term weakening of the Walker circulation over 1972–1998. We also document that significant decadal variations in Walker circulation strength, and for particular choices of start and end years over which trends are calculated, are able to show slight Walker strengthening. Overall, we conclude that Walker circulation variations are more nuanced than either our original publication [Carilli et al., 2014] or the subsequent Karnauskas et al. [2015] comment would suggest. Karnauskas et al. [2015] also provide a detailed analysis of Equatorial Undercurrent (EUC) activity near the Gilbert Islands and argue that the EUC does not strongly affect Butaritari. Our original publication did not claim to find significant EUC/Butaritari linkages, and we appreciate the diligence of Karnauskas et al. [2015] for ruling this out as a possibility. Here we outline the details of our findings

    Equatorial Pacific coral geochemical records show recent weakening of the Walker Circulation

    Get PDF
    Equatorial Pacific ocean-atmosphere interactions affect climate globally, and a key component of the coupled system is the Walker Circulation, which is driven by sea surface temperature (SST) gradients across the equatorial Pacific. There is conflicting evidence as to whether the SST gradient and Walker Circulation have strengthened or weakened over the late twentieth century. We present new records of SST and sea surface salinity (SSS) spanning 1959–2010 based on paired measurements of Sr/Ca and δ18O in a massive Porites coral from Butaritari atoll in the Gilbert Islands, Republic of Kiribati, in the central western equatorial Pacific. The records show 2–7 year variability correlated with the El Niño–Southern Oscillation (ENSO) and corresponding shifts in the extent of the Indo-Pacific Warm Pool, and decadal-scale signals related to the Pacific Decadal Oscillation and the Pacific Warm Pool Index. In addition, the Butaritari coral records reveal a small but significant increase in SST (0.39°C) from 1959 to 2010 with no accompanying change in SSS, a trend that persists even when ENSO variability is removed. In contrast, larger increases in SST and SSS are evident in coral records from the equatorial Pacific Line Islands, located east of Butaritari. Taken together, the equatorial Pacific coral records suggest an overall reduction in the east-west SST and SSS gradient over the last several decades, and a recent weakening of the Walker Circulation.This work was supported by an Australian Nuclear Science and Technology Organization Postdoctoral Fellowship (J.C.), a Natural Sciences and Engineering Research Council of Canada Discovery Grant (S.D.), a National Science Foundation Ocean Sciences Postdoctoral Fellowship (S.S.), and ARC Discovery Project grant DP1092945 (H.V.M.), and an AINSE Fellowship grant (H.V.M.)

    Circulating adrenomedullin estimates survival and reversibility of organ failure in sepsis: the prospective observational multinational Adrenomedullin and Outcome in Sepsis and Septic Shock-1 (AdrenOSS-1) study

    No full text

    Added value of serial bio-adrenomedullin measurement in addition to lactate for the prognosis of septic patients admitted to ICU

    No full text

    Rare predicted loss-of-function variants of type I IFN immunity genes are associated with life-threatening COVID-19

    No full text
    BackgroundWe previously reported that impaired type I IFN activity, due to inborn errors of TLR3- and TLR7-dependent type I interferon (IFN) immunity or to autoantibodies against type I IFN, account for 15-20% of cases of life-threatening COVID-19 in unvaccinated patients. Therefore, the determinants of life-threatening COVID-19 remain to be identified in similar to 80% of cases.MethodsWe report here a genome-wide rare variant burden association analysis in 3269 unvaccinated patients with life-threatening COVID-19, and 1373 unvaccinated SARS-CoV-2-infected individuals without pneumonia. Among the 928 patients tested for autoantibodies against type I IFN, a quarter (234) were positive and were excluded.ResultsNo gene reached genome-wide significance. Under a recessive model, the most significant gene with at-risk variants was TLR7, with an OR of 27.68 (95%CI 1.5-528.7, P=1.1x10(-4)) for biochemically loss-of-function (bLOF) variants. We replicated the enrichment in rare predicted LOF (pLOF) variants at 13 influenza susceptibility loci involved in TLR3-dependent type I IFN immunity (OR=3.70[95%CI 1.3-8.2], P=2.1x10(-4)). This enrichment was further strengthened by (1) adding the recently reported TYK2 and TLR7 COVID-19 loci, particularly under a recessive model (OR=19.65[95%CI 2.1-2635.4], P=3.4x10(-3)), and (2) considering as pLOF branchpoint variants with potentially strong impacts on splicing among the 15 loci (OR=4.40[9%CI 2.3-8.4], P=7.7x10(-8)). Finally, the patients with pLOF/bLOF variants at these 15 loci were significantly younger (mean age [SD]=43.3 [20.3] years) than the other patients (56.0 [17.3] years; P=1.68x10(-5)).ConclusionsRare variants of TLR3- and TLR7-dependent type I IFN immunity genes can underlie life-threatening COVID-19, particularly with recessive inheritance, in patients under 60 years old
    corecore