76 research outputs found
A Definitive Signal of Multiple Supersymmetry Breaking
If the lightest observable-sector supersymmetric particle (LOSP) is charged
and long-lived, then it may be possible to indirectly measure the Planck mass
at the LHC and provide a spectacular confirmation of supergravity as a symmetry
of nature. Unfortunately, this proposal is only feasible if the gravitino is
heavy enough to be measured at colliders, and this condition is in direct
conflict with constraints from big bang nucleosynthesis (BBN). In this work, we
show that the BBN bound can be naturally evaded in the presence of multiple
sectors which independently break supersymmetry, since there is a new decay
channel of the LOSP to a goldstino. Certain regions of parameter space allow
for a direct measurement of LOSP decays into both the goldstino and the
gravitino at the LHC. If the goldstino/gravitino mass ratio is measured to be
2, as suggested by theory, then this would provide dramatic verification of the
existence of multiple supersymmetry breaking and sequestering. A variety of
consistent cosmological scenarios are obtained within this framework. In
particular, if an R symmetry is imposed, then the gauge-gaugino-goldstino
interaction vertices can be forbidden. In this case, there is no bound on the
reheating temperature from goldstino overproduction, and thermal leptogenesis
can be accommodated consistently with gravitino dark matter.Comment: 10 pages, 5 figures, title changed to match the version published in
JHE
Dark Force Detection in Low Energy e-p Collisions
We study the prospects for detecting a light boson X with mass m_X < 100 MeV
at a low energy electron-proton collider. We focus on the case where X
dominantly decays to e+ e- as motivated by recent "dark force" models. In order
to evade direct and indirect constraints, X must have small couplings to the
standard model (alpha_X 10 MeV).
By comparing the signal and background cross sections for the e- p e+ e- final
state, we conclude that dark force detection requires an integrated luminosity
of around 1 inverse attobarn, achievable with a forthcoming JLab proposal.Comment: 38 pages, 19 figures; v2, references adde
Identifying Boosted Objects with N-subjettiness
We introduce a new jet shape -- N-subjettiness -- designed to identify
boosted hadronically-decaying objects like electroweak bosons and top quarks.
Combined with a jet invariant mass cut, N-subjettiness is an effective
discriminating variable for tagging boosted objects and rejecting the
background of QCD jets with large invariant mass. In efficiency studies of
boosted W bosons and top quarks, we find tagging efficiencies of 30% are
achievable with fake rates of 1%. We also consider the discovery potential for
new heavy resonances that decay to pairs of boosted objects, and find
significant improvements are possible using N-subjettiness. In this way,
N-subjettiness combines the advantages of jet shapes with the discriminating
power seen in previous jet substructure algorithms.Comment: 26 pages, 26 figures, 2 tables; v2: references added; v3: discussion
of results extende
Prevalence of Same-Sex Sexual Behavior and Associated Characteristics among Low-Income Urban Males in Peru
Peru has a concentrated HIV epidemic in which men who have sex with men are particularly vulnerable. We describe the lifetime prevalence of same-sex sexual contact and associated risk behaviors of men in Peru's general population, regardless of their sexual identity.A probability sample of males from low-income households in three Peruvian cities completed an epidemiologic survey addressing their sexual risk behavior, including sex with other men. Serum was tested for HSV-2, HIV, and syphilis. Urine was tested for chlamydia and gonorrhea. A total of 2,271 18-30 year old men and women were contacted, of whom 1,645 (72.4%) agreed to participate in the study. Among the sexually experienced men surveyed, 15.2% (85/558, 95% CI: 12.2%-18.2%) reported a history of sex with other men. Men ever reporting sex with men (MESM) had a lower educational level, had greater numbers of sex partners, and were more likely to engage in risk behaviors including unprotected sex with casual partners, paying for or providing compensated sex, and using illegal drugs. MESM were also more likely to have had previous STI symptoms or a prior STI diagnosis, and had a greater prevalence of HSV-2 seropositivity.Many low-income Peruvian men have engaged in same-sex sexual contact and maintain greater behavioral and biological risk factors for HIV/STI transmission than non-MESM. Improved surveillance strategies for HIV and STIs among MESM are necessary to better understand the epidemiology of HIV in Latin America and to prevent its further spread
A Fat Higgs with a Magnetic Personality
We introduce a novel composite Higgs theory based on confining supersymmetric
QCD. Supersymmetric duality plays a key role in this construction, with a "fat"
Higgs boson emerging as a dual magnetic degree of freedom charged under the
dual magnetic gauge group. Due to spontaneous color-flavor locking in the
infrared, the electroweak gauge symmetry is aligned with the dual magnetic
gauge group, allowing large Yukawa couplings between elementary matter fields
and the composite Higgs. At the same time, this theory exhibits metastable
supersymmetry breaking, leading to low-scale gauge mediation via composite
messengers. The Higgs boson is heavier than in minimal supersymmetric theories,
due to non-decoupling D-terms and a large F-term quartic coupling. This theory
predicts quasi-stable TeV-scale pseudo-modulini, some of which are charged
under standard model color, possibly giving rise to long-lived R-hadrons at the
LHC.Comment: 33 pages, 6 figures, 6 table
A Robust, Simple Genotyping-by-Sequencing (GBS) Approach for High Diversity Species
Advances in next generation technologies have driven the costs of DNA sequencing down to the point that genotyping-by-sequencing (GBS) is now feasible for high diversity, large genome species. Here, we report a procedure for constructing GBS libraries based on reducing genome complexity with restriction enzymes (REs). This approach is simple, quick, extremely specific, highly reproducible, and may reach important regions of the genome that are inaccessible to sequence capture approaches. By using methylation-sensitive REs, repetitive regions of genomes can be avoided and lower copy regions targeted with two to three fold higher efficiency. This tremendously simplifies computationally challenging alignment problems in species with high levels of genetic diversity. The GBS procedure is demonstrated with maize (IBM) and barley (Oregon Wolfe Barley) recombinant inbred populations where roughly 200,000 and 25,000 sequence tags were mapped, respectively. An advantage in species like barley that lack a complete genome sequence is that a reference map need only be developed around the restriction sites, and this can be done in the process of sample genotyping. In such cases, the consensus of the read clusters across the sequence tagged sites becomes the reference. Alternatively, for kinship analyses in the absence of a reference genome, the sequence tags can simply be treated as dominant markers. Future application of GBS to breeding, conservation, and global species and population surveys may allow plant breeders to conduct genomic selection on a novel germplasm or species without first having to develop any prior molecular tools, or conservation biologists to determine population structure without prior knowledge of the genome or diversity in the species
Loss of LMO4 in the Retina Leads to Reduction of GABAergic Amacrine Cells and Functional Deficits
BACKGROUND: LMO4 is a transcription cofactor expressed during retinal development and in amacrine neurons at birth. A previous study in zebrafish reported that morpholino RNA ablation of one of two related genes, LMO4b, increases the size of eyes in embryos. However, the significance of LMO4 in mammalian eye development and function remained unknown since LMO4 null mice die prior to birth. METHODOLOGY/PRINCIPAL FINDINGS: We observed the presence of a smaller eye and/or coloboma in ∼40% LMO4 null mouse embryos. To investigate the postnatal role of LMO4 in retinal development and function, LMO4 was conditionally ablated in retinal progenitor cells using the Pax6 alpha-enhancer Cre/LMO4flox mice. We found that these mice have fewer Bhlhb5-positive GABAergic amacrine and OFF-cone bipolar cells. The deficit appears to affect the postnatal wave of Bhlhb5+ neurons, suggesting a temporal requirement for LMO4 in retinal neuron development. In contrast, cholinergic and dopaminergic amacrine, rod bipolar and photoreceptor cell numbers were not affected. The selective reduction in these interneurons was accompanied by a functional deficit revealed by electroretinography, with reduced amplitude of b-waves, indicating deficits in the inner nuclear layer of the retina. CONCLUSIONS/SIGNIFICANCE: Inhibitory GABAergic interneurons play a critical function in controlling retinal image processing, and are important for neural networks in the central nervous system. Our finding of an essential postnatal function of LMO4 in the differentiation of Bhlhb5-expressing inhibitory interneurons in the retina may be a general mechanism whereby LMO4 controls the production of inhibitory interneurons in the nervous system
DELTA2 guidance on choosing the target difference and undertaking and reporting the sample size calculation for a randomised controlled trial.
BACKGROUND: A key step in the design of a RCT is the estimation of the number of participants needed in the study. The most common approach is to specify a target difference between the treatments for the primary outcome and then calculate the required sample size. The sample size is chosen to ensure that the trial will have a high probability (adequate statistical power) of detecting a target difference between the treatments should one exist. The sample size has many implications for the conduct and interpretation of the study. Despite the critical role that the target difference has in the design of a RCT, the way in which it is determined has received little attention. In this article, we summarise the key considerations and messages from new guidance for researchers and funders on specifying the target difference, and undertaking and reporting a RCT sample size calculation. This article on choosing the target difference for a randomised controlled trial (RCT) and undertaking and reporting the sample size calculation has been dual published in the BMJ and BMC Trials journals METHODS: The DELTA2 (Difference ELicitation in TriAls) project comprised five major components: systematic literature reviews of recent methodological developments (stage 1) and existing funder guidance (stage 2); a Delphi study (stage 3); a two-day consensus meeting bringing together researchers, funders and patient representatives (stage 4); and the preparation and dissemination of a guidance document (stage 5). RESULTS AND DISCUSSION: The key messages from the DELTA2 guidance on determining the target difference and sample size calculation for a randomised caontrolled trial are presented. Recommendations for the subsequent reporting of the sample size calculation are also provided
Vitamin D3 Deficiency Differentially Affects Functional and Disease Outcomes in the G93A Mouse Model of Amyotrophic Lateral Sclerosis
Amyotrophic lateral sclerosis (ALS) is a neuromuscular disease characterized by motor neuron death in the central nervous system. Vitamin D supplementation increases antioxidant activity, reduces inflammation and improves motor neuron survival. We have previously demonstrated that vitamin D3 supplementation at 10× the adequate intake improves functional outcomes in a mouse model of ALS
- …
