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Abstract: We introduce a novel composite Higgs theory based on confining supersym-

metric QCD. Supersymmetric duality plays a key role in this construction, with a “fat”

Higgs boson emerging as a dual magnetic degree of freedom charged under the dual mag-

netic gauge group. Due to spontaneous color-flavor locking in the infrared, the electroweak

gauge symmetry is aligned with the dual magnetic gauge group, allowing large Yukawa cou-

plings between elementary matter fields and the composite Higgs. At the same time, this

theory exhibits metastable supersymmetry breaking, leading to low-scale gauge mediation

via composite messengers. The Higgs boson is heavier than in minimal supersymmetric

theories, due to non-decoupling D-terms and a large F -term quartic coupling. This theory

predicts quasi-stable TeV-scale pseudo-modulini, some of which are charged under standard

model color, possibly giving rise to long-lived R-hadrons at the LHC.
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1. Introduction

The origin of electroweak symmetry breaking (EWSB) is a central question in and beyond

the standard model (SM). At one extreme, EWSB could be triggered by the vacuum

expectation value (vev) of an elementary Higgs scalar whose potential may or may not be

stabilized by supersymmetry (SUSY). At the other extreme, EWSB could be triggered by

the vev of a composite operator as in technicolor theories. Here, we wish to revisit the

intermediate possibility that a Higgs scalar might emerge as a composite state from strong
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dynamics. We will use supersymmetric duality as a tool to build a realistic model where

the Higgs is a magnetic degree of freedom from confining electric dynamics.

There are a variety of reasons to suspect that physics at the electroweak scale might

be described by a supersymmetric but composite theory. Weak scale SUSY is an attrac-

tive solution to the hierarchy problem since it stabilizes the electroweak scale without

introducing large corrections to precision electroweak observables. On the other hand, the

non-observation of the Higgs boson at LEP points towards additional dynamics beyond the

minimal supersymmetric standard model (MSSM) to raise the Higgs boson mass. Com-

posite or “fat” Higgs theories [1] enable the Higgs to have stronger self-couplings than

typically allowed in perturbative SUSY scenarios, raising the physical Higgs mass while

still preserving many of the desired features of weak scale SUSY.1

In this paper, we introduce a new type of SUSY composite Higgs theory based on

confining supersymmetric QCD (SQCD) with Nc colors and Nf = Nc + 2 fundamental

flavors in the ultraviolet (UV), and a compositeness scale Λ ' 1000 TeV. The simplest

case with calculable infrared (IR) dynamics corresponds to Nf = 7, Nc = 5. This model

has a number of unique features.

• The Higgs superfields are identified with dual quark fields, meaning that they are

composite degrees of freedom with no (simple) UV interpolating operators. While

previous fat Higgs models have utilized composite meson [1, 2] or baryon [3] fields, to

our knowledge this is the first time a SM mode has been identified with a dual quark

field emerging at relatively low energies.2

• In order for the Higgs bosons to have the correct electroweak quantum numbers,

SU(2)L must be aligned with the dual magnetic group. That is, even the transverse

SM W and Z bosons are partially composite states. Again, to our knowledge this is

a novel use for a magnetic gauge group.

• The Higgs boson can be heavier than in the MSSM because the magnetic gauge

group leads to a non-decoupling D-term. In addition, there is a singlet meson field

that produces an additional NMSSM-like Higgs quartic couplings. This coupling may

be naturally quite large, as duality provides a well-behaved UV completion at high

energies.

• To ensure the existence of a dual magnetic group, Nf must fall in the range 3
2Nc >

Nf > Nc. This turns out to be the same range for which SQCD exhibits metastable

SUSY breaking. Thus, SUSY breaking is automatically tied to Higgs compositeness

in this model, and it is natural to have a modified version of direct gauge/gaugino

mediation.

• Despite the fact that the Higgs bosons are dual squark fields charged under a dual

magnetic group, one can still achieve a large Yukawa coupling to an elementary top
1While generic SUSY composite models do not exhibit gauge coupling unification, we will take the

attitude that the virtues of compositeness outweigh the loss of manifest unification.
2Models in which all SM fields are dual degrees of freedom from GUT-scale duality were first constructed

in, e.g. Ref. [4]. In contrast, here the scale of duality is low and the magnetic dynamics play a crucial role.
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�4

mΦ
Explicit R Breaking,
Colored Exotics

Figure 1: Sketch of the approximate scales that arise in our construction. The electric theory

grows strong at a scale Λ & 103 TeV, below which SUSY and electroweak symmetry are broken

around 102 TeV and 102 GeV, respectively. The details of these mass scales are presented in Sec. 2.

quark. This is possible because of the color-flavor locking phenomenon in SQCD

combined with the technique of “bosonic technicolor” [5, 6].

• While some features of composite Higgs theories can only be estimated through naive

dimensional analysis, the existence of a weakly-coupled magnetic dual of a confining

electric theory gives us important calculational handles to assess the viability of our

scenario.

Together, these features lead to an intriguing paradigm where a single dynamical sector

leads to both EWSB and SUSY breaking in a calculable regime.3 The scales that feature

in this scenario are summarized in Fig. 1.

The remainder of the paper is organized as follows. We describe the UV field content

and the resulting dual IR theory in Sec. 2. This model naturally incorporates both SUSY

breaking and EWSB, described separately in Sec. 3 and Sec. 4. We highlight some of the

main phenomenological features in Sec. 5, and conclude in Sec. 6. Various minutiae are

left to the appendices. In App. A we render a more detailed picture of the minimal model

with Nf = 7, Nc = 5. In App. B we consider the unusual case of Nf = 6, Nc = 4, for which

there is an additional marginal contribution to the superpotential from nonperturbative

dynamics. Finally, in App. C we make a detailed accounting of the states for general Nf .

3For related constructions connecting supersymmetric strong dynamics, EWSB, and SUSY breaking

(albeit without magnetic gauge fields), see also Ref. [7, 8, 9, 10, 11].
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2. A Magnetic Composite Higgs

The Higgs sector of any supersymmetric standard model (SSM) is special, since Hu and Hd

form a vector-like pair. It is therefore natural to generate composite Higgs states from a

vector-like confining theory, while leaving the quarks and leptons of the SSM as elementary

fields. Here we will describe how Higgs multiplets can emerge as dual quark fields from

SQCD, while still having large Yukawa couplings to SSM matter fields.

2.1 The Electric Theory

Our starting point is SU(Nc) SQCD with Nc colors coupled to Nf = Nc + 2 flavors

of fundamental and antifundamental quarks Q,Q. In the absence of any superpotential

deformations, there is an SU(Nf )L × SU(Nf )R × U(1)V global symmetry. This theory

grows strong at a scale Λ, below which it may be described in terms of a dual SU(N ≡
Nf −Nc = 2) magnetic gauge theory with Nf flavors of dual quarks q, q and a dual meson

M transforming as a bifundamental of SU(Nf )L × SU(Nf )R [12]. This dual theory is

weakly coupled provided Nf <
3
2Nc, meaning that the smallest theory with calculable IR

dynamics corresponds to Nf = 7, Nc = 5.4 In what follows we will retain general values of

Nf , and a detailed treatment of Nf = 7, Nc = 5 is reserved for App. A.

We will describe the magnetic dual in further detail in Sec. 2.2, but first we need to add

a number of deformations to this SQCD theory. Apart from the anomalous axial U(1), it

is easiest to visualize the global symmetries as being U(Nf )L×U(Nf )R. The deformations

will explicitly break this U(Nf )L × U(Nf )R flavor symmetry to a diagonal subgroup of

U(Nf )D. The most important deformation treats one of the flavors as special since it will

correspond to the Higgs states, and we call this flavor P, P . Thus, the symmetries of the

theory are best understood in terms of [U(1)× U(Nf − 1)]2 and the diagonal subgroup

U(1)D × U(Nf − 1)D. In Fig. 2, we summarize the UV field content in moose notation.

In Table 1, we have organized the same fields according to their transformation prop-

erties under the diagonal U(1)D × U(Nf − 1)D subgroup of the global symmetries. We

have also identified U(1)V ⊂ U(Nf )D as electric antiquark number5 with the generator

V =
1

3
diag(1, . . . , 1︸ ︷︷ ︸

Nf

). (2.1)

We are using a notation for the diagonal U(Nf )D where the first entry corresponds to

U(1)D (the P, P quarks) and the remaining entries to U(Nf − 1)D (the remaining Q,Q

quarks).

To include SM gauge fields, we will gauge some of the unbroken flavor symmetries of

the theory. In particular, we can weakly gauge a subgroup of U(1)D ×U(Nf − 1)D, which

4The theory with Nf = 3
2
Nc—i.e., Nf = 6, Nc = 4—is likewise free in the IR, but the dynamics

are altered by the presence of a marginal nonperturbative superpotential. We will consider this special

case in App. B, but otherwise will focus on the somewhat larger theories with Nf < 3
2
Nc for which the

nonperturbative superpotential is strictly irrelevant.
5In the IR, this symmetry will correspond to magnetic quark number.
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SU(Nc)

U(Nf − 1)LU(Nf − 1)R

U(1)L U(1)R

PP

Q Q
SS

Figure 2: The UV field content in moose notation. The theory is an SU(Nc) gauge theory with

Nf = Nc + 2 flavors. One of the flavors (P, P ) is singled out because it will be related to the

Higgs multiplets in the IR. Here, we are making explicit the [U(1)× U(Nf − 1)]
2

flavor quantum

numbers, though quark mass terms will break the global symmetries to the diagonal subgroup

U(1)D × U(Nf − 1)D. Eventually, we will weakly gauge an unbroken diagonal subgroup of the

flavor symmetries. Note that the labels L and R are flipped for U(Nf − 1) in order to more easily

draw in the spectator S, S fields.

SU(Nc) U(1)D U(Nf − 1)D U(1)V
P � −1 1 −1/3

P � +1 1 +1/3

Q � 0 � −1/3

Q � 0 � +1/3

S 1 −1 � 0

S 1 +1 � 0

Table 1: The UV field content. Unlike in Fig. 2, here we only give the quantum numbers under

the diagonal U(1)D × U(Nf − 1)D flavor symmetry. For later convenience, we have identified the

electric antiquark number symmetry U(1)V ⊂ U(Nf )D.

we denote by

U(1)H × SU(2)F × SU(3)C × U(1)V ⊂ U(1)D × U(Nf − 1)D (2.2)

with some malice aforethought. The SU(3)C gauge bosons will be directly identified with

the gluons of QCD, and weak SU(2)L will emerge in the far IR as a linear combination of

SU(2)F and the dual magnetic gauge group. Hypercharge will be identified with a linear
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combination of the U(1)’s, and the generator of U(1)H is

H =
1

6
diag(1,−2,−2,−1,−1,−1, 1, . . . , 1︸ ︷︷ ︸

Nf−6

). (2.3)

Note that this generator commutes with the SU(2)F × SU(3)C generators, and the choice

of H is dictated by requiring no states with exotic hypercharges in the IR spectrum.6 The

U(1)H generator is, in general, not traceless so it is not orthogonal to U(1)V . This means

that in the UV there will be some kinetic mixing between the two U(1) gauge bosons, but

this has little effect in the IR.

Gauge coupling unification is challenging to achieve in any composite theory, and our

model is no exception. The presence of so much additional matter charged under the SM

gauge groups imperils perturbative gauge coupling unification. Even the simplest generic

model (Nf = 7, Nc = 5) leads to a Landau pole in SU(3)C somewhere between two and

four orders of magnitude below the GUT scale, depending on the precise hierarchy of

scales. This may be remedied in a variety of ways, including strong unification [13] or a

separate (asymptotically free) Seiberg dual for SU(3)C . Alternatively, Landau poles may

be avoided altogether by using the special minimal embedding (Nf = 6, Nc = 4) presented

in App. B (for which SU(3)C remains perturbative up to the GUT scale), or perhaps

a chiral embedding along the lines of Ref. [14]. Whatever the solution, the prospective

SU(3)C Landau pole lies above all the dynamical scales of interest, rendering it consistent

to treat SU(3)C as a weakly gauged flavor symmetry for the purposes of our model.

Apart from the Higgs sector, the remaining chiral SM matter fields will be elementary

degrees of freedom. From the perspective of the strong dynamics, the interesting SM

operators are color-invariant bilinears of SM chiral fields of the form Ouij ∼ qiucj and Odij ∼
qid

c
j , lie

c
j that we will choose to transform as (1,2)−1/2 and (1,2)1/2 under the gauged

SU(3)C × SU(2)F × U(1)H flavor symmetries. Here, i, j = 1, ..., 3 are SM flavor indices,

and these operators should be thought of as having canonical scaling dimension ∆O = 2.

We can add additional UV deformations which preserve the SM gauge symmetry, such

as supersymmetric mass terms for the electric quarks

We = m0PP +mJ
IQ

IQJ , (2.4)

where I, J = 1, ..., Nf − 1 run over the SU(Nf − 1) flavor indices. The simplest choice of

mass matrix that preserves the SM gauge symmetries and leads to the desired pattern of

IR dynamics is

mJ
I = diag(m1,m1,m2, . . . ,m2︸ ︷︷ ︸

Nf−3

). (2.5)

This leaves a diagonal U(1) × SU(2)F × SU(Nf − 3) × U(1)V subgroup of the full global

symmetries unbroken, where SU(3)C ⊂ SU(Nf − 3).7 For the sake of calculability, we will

6One viable deformation is to shift the final Nf − 3 entries in the hypercharge generator by an integer.

That theory would have heavy particles with exotic hypercharges, but they would still be able to decay.
7We may alternately choose masses mJ

I that preserve only SU(2)F and SU(3)C ⊂ SU(Nf −3), provided

that the desired mass hierarchies are preserved.
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be interested in the case mi � Λ, and a hierarchy m1 & m2 � m0. With these mass

deformations, this theory is known to possess metastable nonsupersymmetric vacua [15].

Inspired by Ref. [16], we will also add vector-like pairs of spectator fields S, S that

are singlets under the strong dynamics but transform as complete multiplets under the

SU(Nf − 1)D global symmetry. These states in fact have well-defined SU(Nf − 1)L ×
SU(Nf − 1)R quantum numbers as shown in Fig. 2. Under the explicit breaking SU(Nf −
1)D → SU(2)× SU(Nf − 3), these spectators decompose as, e.g., S = (S2, SNf−3). These

spectator fields will serve two purposes: to decouple unwanted dual degrees of freedom

and to connect SM chiral matter to the SQCD fields. In particular, we may add marginal

couplings between the spectator fields and electric quarks as well as couplings between

the spectator fields and the SM operators Ou,dij , all consistent with the unbroken flavor

symmetries of the theory:

δWe = λSPQ+ λSPQ− yuijS2Ouij − ydijS2Odij . (2.6)

Our approach shares the philosophy of bosonic technicolor [5, 6], in that S2, S2 are elemen-

tary fields with the quantum numbers of the Higgs doublets Hd, Hu that will be used to

induce couplings to composite fields in the IR.

Finally, we will be interested in a deformation that breaks an accidental R symmetry

in the IR. The simplest such operators are quartic single- and double-trace operators for

the electric quarks of the form

δWe =
cQ
2Λ0

tr(QQ)2 +
γcQ
2Λ0

(trQQ)2 +
cN
2Λ0

(PP )2. (2.7)

which may be induced by integrating out a massive adjoint at the scale Λ0; as we will see,

the scale should be such that cQΛ2/Λ0 ∼ TeV. Such deformations were studied in detail in

Ref. [17].

2.2 The Magnetic Theory

Below the scale Λ, this theory possesses a weakly-coupled description in terms of an

SU(2)M magnetic gauge group with Nf flavors of fundamental and antifundamental mag-

netic quarks q, q and a magnetic meson M . We will assume, for simplicity, that the scales of

the UV and IR theories match, so that no intermediate scale appears in the superpotential.

Under the U(1)D × U(Nf − 1)D flavor symmetry, these fields may be decomposed as

M =

(
N Σ

Σ Φ

)
, qT =

(
Hu

χ

)
, q =

(
Hd

χ

)
. (2.8)

Our notation reflects the fact that some of the magnetic quarks (Hu, Hd) will be identified

as the SM Higgs superfields, and one of the magnetic mesons (N) will be identified with

an NMSSM-like singlet field. The relevant transformation properties of the fields in the

magnetic theory are given in Fig. 3 and in Table 2.

The vectors and matrices in Eq. (2.8) live in SU(Nf ) flavor space, with the second row

and column carrying an SU(Nf − 1)D index. The fields Φ, χ, χ decompose further under
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SU(2)M

U(Nf − 1)LU(Nf − 1)R

U(1)L U(1)R

HuHd

χ χ
SS

Φ

N

ΣΣ

Figure 3: The IR field content in moose notation. The global symmetries are the same as in Fig. 2,

but a dual magnetic gauge group SU(2)M appears below the confinement scale Λ. The fields Hu,

Hd, and N will participate in an NMSSM-like Higgs sector, while the remaining dual fields will

break SUSY as well as act as messengers.

SU(2)M U(1)D U(Nf − 1)D U(1)V
Hu 2 +1 1 +1/3

Hd 2 −1 1 −1/3

χ 2 0 � +1/3

χ 2 0 � −1/3

N 1 0 1 0

Σ 1 +1 � 0

Σ 1 −1 � 0

Φ 1 0 Adj + 1 0

S 1 −1 � 0

S 1 +1 � 0

Table 2: The IR field content. Unlike in Fig. 3, here we only give the quantum numbers under

the diagonal U(1)D ×U(Nf − 1)D flavor symmetry, and have again identified U(1)V , which is now

magnetic quark number.

the explicit breaking SU(Nf − 1)D → SU(2)F × SU(Nf − 3) as

Φ =

(
Y Z

Z X

)
, χT =

(
σ

ρ

)
, χ =

(
σ

ρ

)
. (2.9)

This completes the notation for the IR degrees of freedom.

The magnetic superpotential consists of magnetic Yukawa couplings dictated by dual-
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SU(2)M

U(2)LU(2)R

U(1)L U(1)R

Hd Hu

σσ

N

λd
ijOd

ij λu
ijOu

ij

ρρ

U(Nf − 3)L U(Nf − 3)R

Y

X

ZZ

Figure 4: The IR field content after integrating out the S, S spectator fields. Here, we have made

explicit the U(2)×U(Nf −3) subgroups of relevant U(Nf −1). Again, note that the labels L and R

have been flipped in certain cases for clarity. The dashed lines indicate chiral SM operators which

have induced couplings to Hu, Hd and σ, σ.

ity, plus the appropriate mapping of the superpotential terms in the electric theory:

Wm = hNHuHd + hχIΦ
I
Jχ

J + hHuΣχ+ hχΣHd (2.10)

− hµ2
NN − h(µ2)JI ΦI

J +
1

2
h2mΦΦI

JΦJ
I +

1

2
h2γmΦ(ΦI

I)
2 +

1

2
h2mNN

2

+ λhΛSΣ + λhΛSΣ− yuijS2Ouij − ydijS2Odij .

The first line consists of Yukawa couplings dictated by Seiberg duality; the second line

consists of source and mass terms arising from our UV mass deformations; and the third

line arises from the spectator couplings introduced in Eq. (2.6). The coupling h is naturally

O(1) and tracks the wavefunction renormalization of the meson fields. Up to incalculable

factors of wavefunction renormalization (but retaining explicit powers of h), the parameters

in the magnetic and electric theories are related by

−h(µ2)JI = mJ
I Λ, −hµ2

N = m0Λ, h2mΦ = cQ
Λ2

Λ0
, h2mN = cN

Λ2

Λ0
. (2.11)

The UV coupling between spectators and electric quarks leads, in the IR, to a mass

term between the spectators S, S and corresponding meson components Σ, Σ. Taking

λ = λ for simplicity, these fields may be integrated out at the scale λhΛ, leading to the

reduced field content in Fig. 4. Below the scale λhΛ, the superpotential takes the form

Wm = hχIΦ
I
Jχ

J − h(µ2)JI ΦI
J +

1

2
h2mΦΦI

JΦJ
I +

1

2
h2γmΦ(ΦI

I)
2 (2.12)

+ hNHuHd − hµ2
NN +

1

2
h2mNN

2 +
1

λhΛ
yuijHuσOuij +

1

λhΛ
ydijHdσOdij .
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The first line contains interactions that will lead to SUSY and R-symmetry breaking, while

the second line contains interactions that will lead to EWSB and the generation of fermion

masses.

This construction is reminiscent of Ref. [16], since after integrating out the heavy fields

we have two nearly decoupled sectors, one containing Hu, Hd, and N , and one containing

the rest of the SQCD fields. These two sectors only talk to each other through higher-

dimensional operators suppressed by λhΛ. In what follows, we will neglect contributions

from higher-dimensional Kähler operators, which will provide O[(µ1/λhΛ)2] corrections to

the leading expressions. At the end of the day, we will have to take µ1/λhΛ to be close

to one in order to have have a sufficiently large top Yukawa coupling, so these Kähler

corrections will be parametrically (but not numerically) suppressed.

3. SUSY Breaking and a Fat Higgs

The magnetic superpotential in Eq. (2.12) leads to metastable SUSY-breaking vacua with

spontaneously broken R-symmetry along the lines of Ref. [15]. In this section, we describe

the dynamics at and immediately below the scale of SUSY breaking. We will see how

SUSY breaking leads to color-flavor locking, leading to heavy gauge boson masses and SM

Yukawa couplings to the fat Higgs. We will also see how SSM soft masses are generated

via Higgsed gauge mediation. A subsequent description of EWSB appears in Sec. 4.

3.1 Metastable SUSY Breaking and Color-Flavor Locking

The fields {Φ, χ, χ} comprise a sector breaking SUSY by the rank condition [15]. Specifi-

cally, the hierarchy µ1 > µ2 guarantees the existence of a metastable nonsupersymmetric

vacuum in which σ, σ obtain vevs. There are not enough independent degrees of freedom

to cancel the F -terms of X, defined in the decomposition of Eq. (2.8), so |FX | = |hµ2
2| and

SUSY is broken with vacuum energy V0 = (Nf −3)|h2µ4
2|. As discussed further in Sec. 3.2,

tree-level flat directions are all stabilized at one loop. The explicit R-symmetry breaking

quartic deformations lead to a larger spontaneous R breaking in which X obtains a (small)

nonzero vev. This will eventually lead to gaugino masses proportional to 〈X〉.
As shown in Ref. [17], the nonsupersymmetric vacuum lies at

〈σ〉 = 〈σ〉 = µ1δ
α
a , (3.1)

〈ρ〉 = 〈ρ〉 = 0,

〈X〉 ≈ µ2
2mΦ[1 + (Nf − 3)γ]

hb|µ2
2/µ1|2

δdc ,

〈Y 〉 = 0,

where b = log 4−1
4π2 and γ is the parameter of the R-symmetry-breaking deformation defined

in Eq. (2.7). Here, α is an SU(2)M index, a is an SU(2)F index, c and d are SU(Nf − 3)

indices. The vevs of σ and σ break SU(2)M × SU(2)F → SU(2)L, where SU(2)L is the
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SM electroweak symmetry. This is an interesting example of magnetic color-flavor locking

that will prove crucial in generating SM Yukawa couplings in Sec. 3.3.8

This symmetry breaking pattern leads to three heavy SU(2) gauge bosons of mass

m2
V = 2(g2

M + g2
F )µ2

1 (3.2)

and three massless gauge bosons of SU(2)L with gauge coupling

1

g2
=

1

g2
M

+
1

g2
F

. (3.3)

The σ and σ vevs also break U(1)V × U(1)H → U(1)Y , where U(1)Y is SM hypercharge.

We have normalized the generators in Eq. (2.1) and Eq. (2.3) such that

Y = V +H, (3.4)

and the fields Hu, Hd have the usual hypercharge Y = ±1/2. The mass of the heavy U(1)

gauge bosons and low energy U(1)Y gauge coupling are analogous to the SU(2) groups.

The vacuum alignment of 〈X〉 ensures that the diagonal SU(Nf − 3) flavor symmetry

remains unbroken.

3.2 Spectrum of the SUSY-Breaking Sector

We now consider the resulting mass spectrum in the SUSY-breaking sector {Φ, χ, χ}, with

more details given in App. C. Most of these states get a mass at or a loop factor below the

SUSY breaking scale, with the notable exception of the goldstino (eaten by the gravitino)

and some exotic pseudo-modulini which will feature in the phenomenology described in

Sec. 5.

The fermions ψρ, ψZ and ψρ, ψZ , respectively pair up to obtain supersymmetric Dirac

masses of order hµ1 from the vev of σ. The corresponding scalars combine into massive

complex fields through various linear combinations of ρ, ρ∗, Z, Z
∗
, and most of these fields

obtain masses of order hµ1 and splittings of order hµ2. Of these, 4(Nf − 3) real scalars

obtain tree-level masses of order h
√
µ2

1 − µ2
2; had we not explicitly broken SU(Nf −1)D →

SU(Nf−3)×SU(2)F by µ1 6= µ2, these would have been Nambu-Goldstone Bosons (NGBs)

of spontaneous SU(Nf − 1)D → SU(Nf − 3) × SU(2)F breaking. Properly speaking, the

chiral superfields of the {ρ, Z} sector are messengers of SUSY breaking, with O(
√
FX ∼

hµ2) splittings between the fermions and scalars.

In the {Y, σ} sector, fermions from Y, σ + σ pair up to form Dirac fermions with mass

hµ1. The traceless part of the chiral superfield σ − σ contains the NGBs Im(σ′ − σ′),

which are eaten by the super-Higgs mechanism to give masses to the heavy gauge bosons

of SU(2)M × SU(2)F → SU(2)L; the corresponding real part obtains a mass of the same

order as the heavy SU(2) gauge bosons. (Here and henceforth, primes denote the traceless

part of various fields.) These fields also obtain soft masses at one loop, which will lead to

non-decoupling D-terms that raise the Higgs quartic coupling. Of the trace part tr(σ−σ),

8The terminology “color-flavor locking” is taken from ordinary SQCD where SU(2)F is a global flavor

symmetry. Here, of course, SU(2)F is weakly gauged.
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the chiral superfield Im tr(σ− σ) is an NGB associated with U(1)V ×U(1)H → U(1)Y and

is eaten by the super-Higgs mechanism. Similarly, the chiral superfield Re tr(σ−σ) obtains

a mass of the same order as the heavy U(1) gauge bosons, as well as one-loop soft masses

for the scalar components.

In the X sector, the fermions ψX′ obtain masses from R-symmetry breaking of order

(Nf−3)h2γmΦ, while the trace component ψtrX is the goldstino. To get successful gaugino

masses, mΦ will turn out to be of order the TeV-scale, so these ψX′ fields can play a role

in LHC physics. The scalar components of X, on the other hand, are heavier. The phase

of the trace Arg(trX) is an R-axion whose mass is of order m2
a ∼ h3mΦµ

2
2/〈X〉, while

the amplitude of the trace | trX| and the traceless components X ′ are pseudo-moduli that

obtain masses at one loop via the Coleman-Weinberg (CW) potential [18],

VCW =
1

64π2
STrM4 log

M2

Λ2
. (3.5)

Here M is the complete mass matrix as a function of X ′, | trX|. In particular, near the

origin of moduli space, this leads to positive masses for these pseudo-moduli of order

mCW ≈
h

4π

hµ2
2

µ1
. (3.6)

Significantly, we find that there are no massless, charged fields arising in the SUSY-breaking

sector, and all scalar fields obtain a positive mass-squared at tree level or one loop.

There are, of course, a variety of supersymmetric vacua in addition to the nonsuper-

symmetric vacuum studied here. Explicit R-symmetry breaking leads to a supersymmetric

minimum at X ∼ µ2
2/mΦ, and transitions from the nonsupersymmetric vacuum to the su-

persymmetric one are exponentially suppressed by the small parameter m2
Φ/bµ

2
2. Likewise,

there is another set of supersymmetric vacua generated by irrelevant nonperturbative dy-

namics; transitions to these vacua are exponentially suppressed by µ2
2/Λ

2. The hierarchy

mΦ � µ2 . µ1 � Λ (mi � Λ � Λ0 in the UV theory) therefore guarantees that the

nonsupersymmetric vacuum is parametrically long-lived. Numerical analysis confirms that

metastable vacua can easily be very long lived even in the presence of spectators and other

superpotential deformations [19].

Also note that many of the above states are stable at the level of the IR superpotential.

This is a generic feature of many SUSY breaking and mediation schemes, since they often

involve large (unbroken) approximate global symmetries. In Sec. 5.2, we will describe how

the phenomenologically relevant states can be induced to decay.

3.3 A Fat Higgs in the Far Infrared

Let us now turn to consider the effects of SUSY breaking on the {N,Hu, Hd} sector and

elementary fields charged under the SM. Below the scale of SUSY breaking, we can set

the SUSY breaking fields to their vevs, and we are left with the fields N,Hu, Hd and the

superpotential

WIR = hNHuHd − hµ2
NN +

1

2
h2mNN

2 +
yuijµ1

λhΛ
HuOuij +

ydijµ1

λhΛ
HdOdij . (3.7)

Several comments are in order.
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• This has the same field content as the Higgs sector of the NMSSM, but instead of a

trilinear term for the singlet, we have a linear source term. This is the signature of

a so-called “fat” Higgs [1].

• The first two terms in Eq. (3.7) break electroweak symmetry in the supersymmetric

limit. This is in contrast to the MSSM where electroweak symmetry can only be

broken after SUSY is broken. The effect of the third term depends on the size of mN

relative to µN , as we will discuss in further detail in Sec. 4.

• The last two terms are Yukawa couplings between the Higgs fields and SM fermions.

The magnetic color-flavor locking vevs for σ, σ have converted the previously ir-

relevant couplings involving Ou,d into marginal Yukawa couplings between the SM

operators and magnetic quarks Hu, Hd.

In Sec. 4, we will see that these features lead to successful EWSB.

In order to have a sufficiently large top Yukawa coupling, we require yu33µ1 ' λhΛ. As

discussed at the end of Sec. 2.2, this implies that there will be large Kähler corrections,

but the basic vacuum structure and qualitative spectrum are unchanged. This theory does

not automatically explain the hierarchy of SM flavor, but suitable flavor textures may

be generated in the UV involving any combination of the couplings between SM fields,

electric quarks, and spectator fields. In particular, we have taken λ = λ for simplicity, but

if desired, an up/down hierarchy could be generated by splitting the spectator masses.

3.4 SSM Soft Spectrum

We finally turn to the impact of SUSY breaking on the SSM degrees of freedom. SUSY

breaking in the {Φ, χ, χ} sector leads to soft terms for both the magnetic Higgs sector

degrees of freedom N,Hu, Hd and the elementary SM fields. The primary source of soft

masses is merely gauge mediation, which gives positive masses to all relevant scalar degrees

of freedom and ensures stability of the vacuum. In particular, the modes ρ, ρ get tree-level

SUSY breaking mass splittings and mix with the Z,Z modes once σ, σ obtain a vev; the

{ρ, Z} sector therefore constitute messengers with messenger mass M ' hµ1 and SUSY

breaking scale F ' hµ2
2. Gaugino masses arise as a result of R-symmetry breaking and are

parametrically different from the scalar soft masses.

Note that the particular gauge-mediated spectrum is somewhat unusual. Since both

SU(2)F ×SU(2)M → SU(2)L and U(1)H×U(1)V → U(1)Y at the scale of SUSY breaking,

the soft masses at the SUSY-breaking scale are those of Higgsed gauge mediation [20].

Moreover, as the scale of Higgsing is well above the scale of gaugino masses, there is only

one light gaugino from each of SU(2)F ×SU(2)M → SU(2)L and U(1)H×U(1)V → U(1)Y ,

each of which behave as superpartners of the massless SU(2)L × U(1)Y SM gauge bosons

to excellent approximation. Hence, the only gauginos appearing in renormalization group

(RG) evolution of soft masses down to the weak scale are the conventional gluino, wino,

and bino.

The contributions to soft masses from gauge mediation are as follows.
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• Gauginos: The gauginos obtain masses proportional to R-symmetry breaking, of

order

mλa ' g2
a[1 + (Nf − 3)γ]mΦ

(
µ2

µ1

)4

, (3.8)

where a labels the SM gauge groups. This means that the usual GUT relation

for the SM gauginos holds approximately, up to subleading corrections due to the

complicated messenger sector. Note that while the dominant contribution would

be expected at g2
amΦ, the additional suppression comes from the fact that gaugino

masses vanish at leading order in F/M2. Conversely, the loop factor is cancelled by

the inverse loop factor coming from spontaneous R-symmetry breaking by the X vev.

• Sfermions: The sfermions obtain masses unsuppressed by R-symmetry breaking.

The masses-squared may be written as a sum of two contributions: one conventional

contribution coming from the massless gauge bosons, and one additional contribution

coming from the massive gauge bosons, suppressed relative to the first contribution

by both (gF /gM )4 and additional numerical coefficients a1, a2.9 Hence

m2
f̃
'
[
Cr3

(α3

4π

)2
+ Cr2

(
1 + a1

g4
F

g4
M

)(α2

4π

)2

+
3

5
Y 2

(
1 + a1

g4
H

g4
V

+ 2a2
g2
H

g2
V

)(α1

4π

)2
](

µ2
2

µ1

)2

, (3.9)

where the Cra are the appropriate quadratic Casimirs of SU(3)C and SU(2)L for the

representation r, and Y is its hypercharge.

• Higgses: The Higgses obtain their soft masses much in the manner of the other

sfermions, though the additional contributions to their masses from heavy gauge

bosons are enhanced by the ratio (gM/gF )4. The parametric differences between the

Higgs and sfermion masses arise because the sfermions are charged under SU(2)F ,

while the Higgses are charged under SU(2)M . Hence

m2
Hu,Hd

'
[
Cr2

(
1 + a1

g4
M

g4
F

)(α2

4π

)2

+
3

5
Y 2

(
1 + a1

g4
V

g4
H

+ 2a2
g2
V

g2
H

)(α1

4π

)2
](

µ2
2

µ1

)2

. (3.10)

The mass for Hu is also significantly reduced by RG evolution to the weak scale due

to the size of the top Yukawa coupling.

• Singlet: The singlet does not get a soft mass from gauge mediation because it is

neutral under all the gauge symmetries. There is a small tachyonic soft mass of

order m2
S ∼ − h4

(16π2)2
µ42
λ2Λ2 generated by the two-loop CW potential [21, 22]. Perhaps

more importantly, the soft masses for the Higgses feed into the RG evolution for the

9For details of the calculation and the precise form of the numerical suppression, see Ref. [20]. In our

case, a1, a2 ∼ O(0.5).
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singlet soft mass and drive the soft mass more negative. Hence the singlet soft mass

is typically of order

m2
S ' −4

h2

16π2
m2
Hd

log(µ2
1/m

2
Hd

). (3.11)

This completes the contributions from Higgsed gauge mediation. Note that A- and B-

terms are small and generated mostly by radiative effects, but they will be important in

the discussion of Sec. 4.3.

Finally, there is an additional contribution to the soft masses of scalars charged under

SU(2)L × U(1)Y coming from D-terms after inserting the vev 〈σ〉. For sfermions, this

additional contribution is of the form

δm2
f̃

=

(
Cr2

g2
F

g2
M

α2

2π
+

3

5
Y 2 g

2
V

g2
H

αY
2π

)
m2

CW +O(m2
CW/m

2
V ), (3.12)

where m2
CW ∼ h2

8π2

h2µ42
µ21

is the one-loop CW soft mass of the scalar δσ− = 1√
2
(δσ− δσ), and

additional corrections are suppressed by the smallness of this soft mass relative to the scale

of the heavy gauge bosons. For the Higgses, this additional contribution is of the form

δm2
Hu,Hd

=

(
Cr2

g2
M

g2
F

α2

2π
+

3

5
Y 2 g

2
H

g2
V

αY
2π

)
m2

CW +O(m2
CW/m

2
V ). (3.13)

This is the well-known radiative correction to the Higgs soft masses that arises in theories

with non-decoupling D-terms [23, 24], whose effect on the Higgs we will discuss below. In

order to avoid significant fine-tuning of the Higgs mass, it is necessary for the CW soft

masses to be below ∼ 10 TeV.

4. Electroweak Symmetry Breaking

We now turn to the dynamics of the Higgs sector arising from Eq. (3.7) and the associated

soft masses. Below the scale of SUSY breaking, the remaining IR dynamics drives EWSB.

The superpotential for the Higgs fields in Eq. (3.7) leads to a scalar potential

VW = h2|HdHu − µ2
N + hmNN |2 + h2|N |2

(
|Hu|2 + |Hd|2

)
. (4.1)

As discussed in Sec. 3.4, the relevant soft SUSY breaking terms in the scalar potential are

Vsoft = m2
Hu
|Hu|2 +m2

Hu
|Hd|2 +m2

S |N |2, (4.2)

with m2
Hi
∼ α2

M
16π2

µ42
µ21

and m2
S ∼ − h2

2π2m
2
Hi

, where αM is the magnetic gauge group structure

constant. There is also a D-term potential to be discussed in Sec. 4.1.

The actual pattern of EWSB depends sensitively on the relation between mN and

µN . In the limit mN � µN , EWSB occurs in the supersymmetric limit, as discussed

further in Sec. 4.2. In this case, it is not necessary for m2
Hu

to run negative, and EWSB

is driven largely by superpotential terms. In contrast, in the limit mN � µN we may

integrate out N ; we then recover a version of the MSSM with irrelevant operators, and

electroweak symmetry may only be broken nonsupersymmetrically, as discussed further in
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Sec. 4.3. This requires m2
Hu

to run negative. In the intermediate case mN ' µN , the

resulting vacuum typically preserves electroweak symmetry, so we will therefore focus on

the dynamics in the hierarchical limits mN � µN and mN � µN . Significantly, both

limits share various features arising from compositeness that raise the physical Higgs mass

relative to the MSSM, primarily by enhancing the Higgs quartic coupling.

4.1 A Large Higgs Quartic

The mass of the lightest Higgs scalar is controlled by the quartic, and in the MSSM the

quartic comes only from D-terms and constrains the tree-level mass of the lightest Higgs

boson to be lighter than the Z boson. Raising the mass by radiative corrections so that

it is above the LEP bounds requires heavy stops (and/or large A-terms) and introduces a

little hierarchy problem.

Increasing the tree-level mass of the lightest Higgs scalar ameliorates the little hierarchy

problem, and thus motivates many NMSSM constructions and fat Higgs models. These

models have an additional contribution to the quartic coming from the coupling to the

singlet shown in Eq. (4.1), which goes like h2. We emphasize that in our construction,

the superpotential Yukawa coupling h may be naturally quite large at the weak scale. In

conventional versions of the NMSSM, the size of this Yukawa coupling in the IR is limited

by the desire to avoid a Landau pole at low scales. However, in theory at hand, duality

provides a natural and well-behaved UV completion at the scale Λ that allows us to evade

limits coming from perturbativity.

Beyond the large F -term quartic, an additional contribution which does not appear in

other fat Higgs models is a consequence of the mixing between SU(2)M and SU(2)F in-

duced by SUSY breaking. Loops of heavy SU(2) gauge bosons give rise to a non-decoupling

correction to the Higgs quartic D-term [23, 24, 25]. The D-term in this theory may be read-

ily computed by integrating out the fluctuation δσ− = 1√
2

Im(δσ − δσ) at tree level. This

field obtains a supersymmetric mass-squared 2(g2
M + g2

F )µ2
1 from the super-Higgs mecha-

nism, as well as a nonsupersymmetric mass m2
CW ∼ h2

8π2

h2µ42
µ21

at one loop. Integrating out

δσ−, the D-term for the diagonal electroweak SU(2)L exhibits a non-decoupling correction

to the Higgs quartic of the form

VD =
g2
Mg

2
F

8(g2
M + g2

F )

(
1 +

g2
M

g2
F

2m2
CW

2(g2
M + g2

F )µ2
1 + 2m2

CW

) ∣∣∣H†uσaHu −H†dσaHd

∣∣∣
2
, (4.3)

where mCW is the CW soft mass of δσ−, gM is the magnetic SU(2) gauge coupling, and

gF is the coupling of the gauged SU(2) flavor symmetry in the SUSY-breaking sector.

We recognize
g2Mg2F
g2M+g2F

as simply being the IR SU(2)L gauge coupling squared g2 from

Eq. (3.3), so the overall scaling of the D-term is that same as for SU(2)L alone. But

only a few decades of energy lie between Λ and the scale of SU(2)M breaking, meaning

that gM is naturally quite large and the correction to the Higgs quartic is parametrically

enhanced by an amount g2
M/g

2
F . Of course, the mCW soft mass is suppressed relative to

2(g2
M + g2

F )µ2
1, but in generic regions of parameter space, these competing effects still give

rise to an O(1) overall correction. An identical contribution comes from the hypercharge
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D-term, as the scale of Higgsing is the same, though in this case the correction to the

quartic is proportional to the ratio g2
V /g

2
H , which is not necessarily large.

This D-term quartic correction raises the tree-level prediction for the Higgs mass by

an amount

δm2
h =

g2∆ + g′2∆′

2
v2 cos2(2β), (4.4)

where ∆ is the second term in parentheses in Eq. (4.3), ∆′ is the corresponding (sub-

dominant) hypercharge term, and tanβ is the usual ratio of the vevs of the Higgses. For

moderate values of tanβ, this provides a correction to the Higgs mass ranging between a

few GeV (for h = 1) to a few tens of GeV (for h = 2).

Thus, the magnetic nature of the Higgs enhances the quartic in two complementary

ways, as we will see in more detail below. In the supersymmetric NMSSM-like limit, we

have tanβ ' 1, in which case the D-term corrections to the Higgs quartic are suppressed.

However, in this limit the F -term contributions to the Higgs quartic are maximal. In con-

trast, in the nonsupersymmetric MSSM-like limit, the F -term contribution is diminished,

but tanβ � 1 so that the D-term corrections are significant. Whatever the parametric

limit, a fat Higgs with a magnetic personality significantly outweighs its MSSM counter-

part.

4.2 EWSB in the Supersymmetric Limit

In the limit µN � mN , EWSB may occur supersymmetrically. In the supersymmetric

limit, the superpotential of Eq. (3.7) has two minima, only one of which breaks electroweak

symmetry. Loosely speaking, these minima correspond to 〈Hu,d〉 ∼ µN , 〈N〉 ∼ 0 and

〈Hu,d〉 ∼ 0, 〈N〉 ∼ µ2
N/hmN , respectively. Once we include the nonsupersymmetric soft

corrections from Eq. (4.2), the electroweak-preserving vacuum is destabilized provided mN

is not too large.

While the analytic form of the EWSB vacuum is difficult to compute, we can under-

stand the parametric behavior by making a few simplifying assumptions. In particular,

consider the case m2
Hu
' m2

Hd
. This is equivalent to tanβ ' 1 because in this limit there

is an exchange symmetry between the two Higgs doublets in the potential. This holds to

good approximation at the scale of SUSY breaking, where we have m2
Hu

= m2
Hd

, but RG

running from the top Yukawa coupling will reduce m2
Hu

relative to m2
Hd

and raise tanβ

above 1. This effect, however, is often expected to be small for two reasons. First, the scale

of SUSY breaking is quite low so there are only a few decades of running. Second, the Higgs

soft masses are larger than in usual gauge mediation models because of the contribution

from loops of the heavy SU(2) bosons parameterized by a1 in Eq. (3.10), so the running

effects from Yukawa couplings can be relatively small.10

For tanβ ' 1, we can ignore the potential coming from the D-terms even though it is

parametrically larger than in the MSSM. We can then express the EWSB parameters v2 =

〈Hu〉2 + 〈Hd〉2 ' (175 GeV)2 and tanβ simply in terms of the superpotential parameters

10Of course, there are regions of parameter space where both of these considerations are vitiated, as we

will see in Sec. 4.3.
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and soft masses:

v2 =
(
µ2
N −

mHd
mHu

h2

)(m2
Hd

+m2
Hu

mHd
mHu

)
,

tanβ =
mHd

mHu

,

〈N〉 =
mN mHu mHd

h2v2 +m2
S

, (4.5)

where mS is the (tachyonic) soft mass of the singlet as in Eq. (4.2), and we have ignored

terms O(m2
N/µ

2
N ) and higher. The computation of the vacuum structure is quite similar

to Ref. [1]. From these equations we see that EWSB is driven by the supersymmetric

parameter µN and thus occurs even in the supersymmetric limit. Viable EWSB happens

provided the Higgs soft masses are smaller than µN , and there is a reasonable (though

small) effective µ term which is proportional to mN .

In the approximation m2
Hu

= m2
Hd
≡ m2

H , there is a SM-like Higgs h0 = (H0
u+H0

d)/
√

2

whose mass is

m2
h0 = h2v2. (4.6)

As advertized, while the MSSM D-term contribution vanishes when tanβ = 1, the SM-like

Higgs gets a large mass from the coupling to the singlet.

As in any theory of two Higgs doublets, there is also a pseudoscalar Higgs A0, a heavier

neutral scalar Higgs H0, and the charged scalar Higgses H±. In this limit, their masses

are:

m2
A0 = 2m2

H + h2v2,

m2
H0 = 2m2

H +
g2(1 + ∆) + g′2(1 + ∆′)

2
v2, (4.7)

m2
H± = 2m2

H +
1

2
g2(1 + ∆)v2.

This predicts a fixed ordering between the states, in which the pseudoscalar will be heaviest,

followed by the heavy scalar, with the charged Higgses being lightest. This is unlike the

MSSM where the pseudoscalar is always lighter than the charged states. Finally, there is

a singlet scalar and pseudoscalar from the N multiplet, which are degenerate and do not

mix with the Higgs in the mN → 0 limit. Their masses are both given by

m2
s0 = h2v2 +m2

S . (4.8)

These states will typically be lighter than all the Higgs states because m2
S , the soft mass

for N , is tachyonic.

As in the NMSSM, the neutralino sector now has five states with the singlino mixing

with the usual gauginos and higgsinos. In the limit where mλa � hv � h〈N〉, the gauginos

are roughly mass eigenstates with masses mλa as described in Sec. 3.4. The higgsinos

and singlino have large mixing between them, with two getting mass ∼ hv and the third

getting mass g2v2/mλ2 , which can be quite light. The regime in which mλa ∼ hv is also
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Figure 5: Example scalar spectrum in the approximation of mN = 0 where the singlet states do

not mix with the Higgses. Note that the value of h is given at the scale µ1 = 100 TeV and will be

decreased at the weak scale by RG running. For the left spectrum, both m2
Hu

and m2
Hd

are positive

at the weak scale, while for the right spectrum m2
Hu

runs negative.

quite interesting, and typically leads to a viable spectrum of neutralinos as well. While it

is difficult to come up with analytic solutions to the eigenvalue equation in this regime,

numerical study of the parameter space reveals that the lightest neutralino is often mostly

bino, with mass between about 10 and 100 GeV.

The chargino mass matrix is the same as in the MSSM with the µ term coming from

h〈N〉. The chargino which is mostly wino will have mass ∼ mλ2 while the mostly-higgsino

chargino will have mass ∼ h〈N〉 − g2v2/mλ2 , so it is expected to lie not too far above the

LEP bound for charged states. Note that the phase of h〈N〉 and mλ2 must be aligned or

anti-aligned to avoid introducing new sources of CP violation; if they are anti-aligned this

raises the mass of the lightest chargino.

The size of the magnetic gauge coupling plays an important role in the Higgs soft

masses. For a low duality scale, gM is large and the Higgs mass parameters are larger than

other SU(2) charged scalars. In this region, the RG running has a smaller effect and the

spectrum looks quite similar to the one discussed so far in this section. On the other hand,

gM could be smaller which makes the spectrum more MSSM-like. In Fig. 5 we show an

example of each kind of spectrum. From the figure we see that small changes in gM can

have a large effect on the Higgs soft masses which affects the entire scalar spectrum.

The two spectra presented both have the SM-like Higgs with tree-level mass between

115 and 200 GeV, so they are allowed by precision electroweak measurements. There is

plenty of parameter space, however, where the SM-like Higgs can be heavier. The precision
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electroweak analysis in this case is entirely analogous to Ref. [1], which found such heavier

Higgses to be compatible with precision electroweak constraints.

4.3 EWSB in the Nonsupersymmetric Limit

Thus far, we have focused on the case for which EWSB proceeds supersymmetrically.

However, there is also a limit of the theory in which electroweak symmetry is broken

nonsupersymmetrically much as in the MSSM, albeit with additional corrections that raise

the tree-level prediction for the lightest neutral Higgs mass.

In the limit mN � µN , we may integrate out the singlet N supersymmetrically at

the scale mN . This leaves us with an MSSM-like Higgs sector with additional correc-

tions coming from irrelevant operators suppressed by mN . In this limit, the Higgs sector

superpotential below mN is

W =
µ2
N

mN
HuHd −

1

2mN
(HuHd)

2 . (4.9)

Thus, we find a conventional supersymmetric µ term of order µH = µ2
N/mN , plus an

additional quartic superpotential correction. The physics of EWSB is simply that of the

MSSM with certain irrelevant operators [26]. Successful EWSB then requires both that

the combination m2
Hu

+ µ2
H runs negative above the weak scale and that an adequate Bµ

term is generated.

Radiative EWSB is typically easy to achieve in the MSSM even for the lowest-scale

models of gauge mediation due to the significant RG effects of the top Yukawa. However, as

discussed in Sec. 4.2, there is an enhancement of the Higgs soft masses from the SU(2)M
gauge coupling seen in Eq. (3.10). This raises the UV values of the Higgs soft masses

significantly above those of other electroweak-charged states, and it is far from clear that

the soft masses will run negative.

Interestingly, there are additional contributions in our construction that actually favor

radiative EWSB. Above the scale mN , the field N runs in loops that renormalize the Higgs

soft masses. The largeness of the h Yukawa means that these contributions are as effective

as the top Yukawa in driving the Higgs soft masses negative. In the limit where we retain

only yt and h among the various Yukawa couplings, the one-loop RG equation for m2
Hu

above the scale mN is

16π2 d

dt
m2
Hu

= 3Xt +XN +
3

5
g2

1Tr[Yjm
2
φj

]− 6

5
g2

1m
2
λ1 − 6g2

2m
2
λ2 , (4.10)

where Xt = 2|yt|2(m2
Q̃3

+m2
Hu

+m2
ũ3

)+2|at|2 and XN = 2|h|2(m2
Hd

+m2
Hu

+m2
N )+2|aN |2.

Here at, aN are the A-terms corresponding to the top and singlet Yukawa couplings, respec-

tively; these are loop-suppressed relative to the other soft masses and typically negligible.

Below the scale mN , of course, we should integrate out N and the RG equation is simply

that of the MSSM. But for mN . 10 TeV, the additional contribution from h is often

sufficient to drive m2
Hu

negative provided adequate RG time. A representative illustration

of the range of UV soft masses and messenger scales for which radiative EWSB occurs is

shown in Fig. 6. For lower values of the messenger scale (µ1 . 103 TeV), successful radia-

tive EWSB requires significantly smaller values of gM (equivalently, higher values of Λ) in
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Figure 6: Range of UV Higgs soft mass mHu and messenger scale µ1 for which radiative EWSB

is possible (m2
Hu

+ µ2
H < 0) in the MSSM-like limit. The darker shaded region corresponds to

h(µ1) = 1, while the lighter region corresponds to h(µ1) = 2. We have taken a representative soft

spectrum and µN = 500 GeV, mN = 2 TeV.

order to reduce the boundary value of mHu . It is important to note that the messenger

scale µ1 may not be made arbitrarily large, lest the gaugino masses be too small.

Since the effective µ term is generated supersymmetrically and direct gauge mediation

yields Bµ ∼ 0 at the scale of SUSY breaking, Bµ is generated radiatively during RG

evolution to the IR. Above the scale mN , βBµ ∼ 0 at two loops; Bµ is generated radiatively

only below mN and comes out around

Bµ ∼ −µH
(

3α2

2π
mλ2 log

mN

mλ2

+
3α1

10π
mλ1 log

mN

mλ1

)
. (4.11)

(The actual value is somewhat reduced by a partial cancellation with additional contribu-

tions coming from the suppressed A-terms.) Given that the logarithmic enhancement is

not large, Bµ is typically smaller than m2
Hd

, favoring moderate-to-large values of tanβ.

That said, m2
Hd

is significantly decreased by RG evolution, so that a wide range of tanβ

may be realized depending on the details of the soft spectrum.

Thus all the ingredients necessary for EWSB arise in the MSSM-like limit of the theory.

Radiative EWSB is possible thanks to the added RG contribution of the h Yukawa, provided

gM is not too large. The µ term arises supersymmetrically, and Bµ is generated radiatively.

More appealingly, the little hierarchy problem is alleviated by corrections to the tree-

level Higgs mass. As alluded to earlier, this limit naturally provides two corrections that lift

the tree-level prediction for the Higgs mass and are significant for complementary values of

tanβ. The first is the non-decoupling D-term mentioned in Sec. 4.1. The influence of this

correction is maximal in the MSSM limit, where radiative corrections split m2
Hu

from m2
Hd
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and lead to moderate or large values of tanβ. The second is the quartic superpotential

correction in Eq. (4.9). Such a quartic correction is a well-known means of raising the

tree-level prediction for the lightest neutral Higgs mass. In this case, it shifts the Higgs

mass by an amount [26]

δm2
h '

8m2
A0

m2
A0 −m2

Z

µ2
N

m2
N

v2

tanβ
, (4.12)

where mA0 is the pseudoscalar mass. This shift is particularly significant for mN & µN
and moderate tanβ. Hence even in the MSSM-like limit of this model, there are signifi-

cant additional contributions to the tree-level prediction for the Higgs mass, but they are

qualitatively different than in the supersymmetric limit.

5. Phenomenology

Here, we will briefly discuss the main phenomenological features of our scenario, beyond

the Higgs boson spectrum described in the previous section. The collider phenomenology

is similar to the MSSM or NMSSM, with the notable addition of TeV-scale exotic states.

5.1 SSM States

As SUSY breaking occurs at around 100 TeV in our scenario, the gravitino is light, on

the order of a few eV and safe from cosmological constraints [27, 28]. Thus, the leading

phenomenology is that of a typical SSM with a gravitino as the lightest supersymmetric

particle (LSP) [29, 30, 31, 32]. The identity of the next-to-lightest supersymmetric particle

(NLSP) depends on the details of the Higgs sector and the electroweak gaugino masses.

While the singlino is often light in many NMSSM models, that is not the case in the

supersymmetric limit of EWSB discussed in Sec. 4.2. The singlino gets a large Dirac mass

with the higgsinos of O(hv), and h can be quite large. In this region of parameter space,

the lightest neutralino is often mostly bino, but its mass is sensitive to the relative sign of

the gaugino and higgsino mass parameters. In the basis where h〈N〉 > 0, if mλ1 > 0 then

the lightest neutralino will be a few tens of GeV, but because it is mostly bino, it is still safe

from limits on direct searches at colliders. On the other hand, if mλ1 < 0 then the lightest

neutralino and lightest chargino have similar masses, and the lightest chargino can often

be the NLSP. If electroweak symmetry is broken in the MSSM limit as in Sec. 4.3, then

the NLSP can either be a neutralino (typically with a large bino and/or higgsino fraction)

or a sfermion (typically a right- or left-handed stau).

The identity of the NLSP determines much of the collider phenomenology. Because the

gravitino is light, the decay of the NLSP is prompt. For a mostly bino NLSP, SUSY events

will often contain two photons, a classic signature of low-scale gauge mediation [29, 30].

If kinematically allowed, there will be some events where the NLSP decays to a Z. If

the NLSP is a chargino, it is mostly higgsino but it still has some wino fraction, so the

two-body decay to a W and a gravitino, while suppressed by a mixing angle, will generally

dominate over the three-body decay through a virtual Higgs to b quarks. A sfermion NLSP

typically decays to its corresponding fermion via gravitino emission.
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As discussed in Sec. 3.4, the soft masses for the MSSM states arise from gauge media-

tion, but with a number deviations from the minimal gauge mediation predictions. First,

the gaugino masses have a different parametric behavior than in minimal gauge media-

tion, because the gaugino masses arise from R-symmetry breaking. Thus, the gauginos

may be parametrically heavier or lighter than the sfermions depending on the details of

the SUSY-breaking dynamics. Second, the presence of additional heavy SU(2) and U(1)

gauge bosons means that the soft spectrum is modified as in Higgsed gauge mediation [20].

Typically, the heavy SU(2) gauge bosons only affect the Higgs spectrum since gF < gM
and the matter sfermions are only charged under SU(2)F .

The contribution from hypercharge is particularly interesting. The hierarchy of gH
and gV is a priori unknown, and since the matter sfermions are charged under U(1)H , the

sfermions with larger hypercharge can be heavier than naively expected if gH > gV . Even

when gH is only slightly larger than gV , the large power of the ratio of the gauge couplings

in Eq. (3.9) raises the mass of the right-handed sleptons above the mass of the left-handed

sleptons. For larger values of the U(1)H coupling, gH ∼ 1.5, the mass of the right-handed

sleptons is comparable to the squarks, which effectively decouples the right-handed sleptons

at the LHC.11 In this regime the up-type right-handed squarks also become measurably

heavier than the other squarks. In certain cases, depending on the chargino and neutralino

spectrum, the NLSP could even be a sneutrino.

As long as the gluino and squarks are lighter than a few TeV, then the LHC will be

able to probe the supersymmetric spectrum through cascade decays initiated by pair- or

associated-production of the colored states. Indeed, recent LHC searches for general gauge

mediated models [33, 34] already constrain the parameter space with a bino-like NLSP [35].

5.2 Colored Exotics

Beyond the SSM field content, there is novel phenomenology from the TeV-scale exotic

states that participate in SUSY breaking. Much of the additional matter charged under

the SM obtains masses at—or one loop factor below—the scale of SUSY breaking, and

are therefore too heavy to be produced at colliders like the LHC. However, the fermionic

components of the pseudo-modulus X ′ obtain a mass of order mψX′ = (Nf − 3)γh2mΦ ∼
O(TeV) from R-symmetry breaking. These masses are parametrically of the same order as

(though typically somewhat larger than) the SM gaugino masses, mλ ∼ g2
SMmΦ(µ2/µ1)4.

As long as there is not a huge hierarchy between µ1 and µ2, the pseudo-moduli can play

an interesting role in TeV-scale physics.12

We will focus on colored exotic particles since these are the easiest to produce at the

LHC. The precise number and SM charges of these pseudo-modulini depend on how SU(3)C
is embedded in the SU(Nf − 3) flavor symmetry. For the simple case of Nf = 7, Nc = 5,

the pseudo-modulini amount to three fields ψX3 , ψX3
, ψX′8 , which respectively transform

as 3, 3, 8 under SU(3)C . In the absence of any additional interactions (and ignoring the

11Needless to say, if either of the IR U(1) gauge couplings are taken to be too large, there will be U(1)

Landau poles in the UV in addition to the potential SU(3)C Landau pole.
12In addition, the pseudo-modulini masses are proportional to the parameter γ, which can be made small

without changing the overall phenomenology.
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non-perturbative superpotential), these pseudo-modulini are all stable. Thus, if they are

produced, they will bind with SM quarks to form R-hadrons, some of which are electrically

charged. The lightest R-hadron associated with each pseudo-modulino is stable at the level

of the IR superpotential. (For a review of R-hadron phenomenology, see Ref. [36].)

A cosmological population of stable R-hadrons is ruled out by bounds on heavy sta-

ble particles, thus the pseudo-modulini must be induced to decay. To be conservative,

we will arrange these decays to occur before big bang nucleosynthesis (BBN). Pseudo-

modulini decays may occur through dimension-five or dimension-six operators, arising due

to symmetry-breaking interactions at a higher scale M∗. There are a variety of scales in

the theory at which such new physics may enter. For example, there is the scale λhΛ of

elementary fields coupled to QQ (such as the spectators S); the scale Λ0 at which the quar-

tic operators (QQ)2 are generated; or of course MGUT or MPl. Given a new dimension-five

operator generated at the scale M∗ (which may conceivably be any of the above scales,

ranging from 105–1018 GeV), the lifetime of a pseudo-modulino is of order

τ ' 8π
M2
∗

m3
ψX′

' 2× 10−22 s

(
TeV

mψX′

)3( M∗
105 GeV

)2

. (5.1)

This leads comfortably to decays before BBN for all M∗ . MGUT, and for M∗ ' MGUT,

late pseudo-modulino decays around 102–104 seconds may even help to explain the cosmic

lithium anomaly [37, 38]. For dimension-six decays,

τ ' 8π
M4
∗

m5
ψX′

' 2× 10−18 s

(
TeV

mψX′

)5( M∗
105 GeV

)4

, (5.2)

for which M∗ . 1010 GeV is safe from BBN constraints.

Schematically, dimension-five UV operators which can lead to decays of ψX3 and ψX3

are

W =
1

M∗
QQΨΨ′, (5.3)

where Ψ and Ψ′ are SM matter multiplets of the appropriate charge. Below the confinement

scale, these operators lead to decays of a pseudo-modulino to a fermion and a sfermion,

such as

ψX3 → q ˜̀, ψX3
→ ucẽc. (5.4)

The octet ψX′8 can only decay at dimension-six, through for example

W =
1

M2
∗

tr
(
QQWαWα

)
, (5.5)

where Wα is for the SM color gauge field and the trace is over color indices. Below the

confinement scale, this leads to a transition color dipole decay to a gluon and a gluino

ψX′8 → gg̃. (5.6)

These colored pseudo-modulini can be pair-produced via QCD processes. For suffi-

ciently large M∗, the pseudo-modulini can be stable on collider scales, leading to many of
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the spectacular collider signatures of R-hadrons (see Ref. [39, 40] for recent searches). For

example, a pseudo-modulino produced at colliders may travel at least 1 cm in the detector

before decay provided M∗ & 5× 1010 GeV (for dimension-five operators) or M∗ & 7× 106

GeV (for dimension-six operators). For longer lifetimes, (charged) R-hadrons can stop in

the calorimeters and undergo late decays in beam-off periods [41, 42].

Finally, we note that some components of the messengers arising from the {ρ, Z} sector

enjoy a Z2 messenger parity and are thus stable at the level of the IR effective theory. Such

stable messengers typically give rise to an overabundance of dark matter, which may be

avoided by inducing decays via higher-dimension operators similar to Eq. (5.3).

6. Conclusions

Using the power of duality, we have constructed a realistic composite Higgs theory where

SUSY breaking and EWSB are intimately connected. The dual magnetic gauge group

plays a key role in our construction, with the Higgs multiplets arising as “fat” dual mag-

netic squarks. This model naturally incorporates messengers for gauge mediation, which

generates plausible SSM soft masses. The physical Higgs boson is typically heavy owing

to a combination of non-decoupling D-terms and a large NMSSM-like quartic coupling.

This theory showcases how the rich dynamics of SQCD can have a direct impact on

electroweak scale physics. The phenomenon of color-flavor locking is a key feature of

metastable SUSY breaking in SQCD, but it plays an even more important role in this

construction, since it allows for a large top Yukawa coupling even though the top quark

is elementary. Quasi-stable pseudo-modulini are a generic feature of SQCD models, and

they appear here as well, leading to long-lived colored states that may be kinematically

accessible at the LHC. While we have focused on the regime 3
2Nc > Nf > Nc where the

theory is manifestly calculable, the special case of Nf = 6 and Nc = 4 can exhibit the

desired phenomenology with a minimal set of particles, as discussed further in App. B.

After a year of successful data taking at the LHC, we are poised to understand the

origin of EWSB. While SUSY theories with elementary Higgs bosons have long been an

attractive approach to the hierarchy problem, composite Higgs theories offer a plausible

alternative. We find SUSY composite Higgs bosons to be particularly appealing given the

difficulty of achieving a sufficiently heavy physical Higgs boson in the MSSM alone, and

we are encouraged by the relative simplicity and calculability of our proposed scenario.

Ultimately, the LHC will provide insight into whether there truly is a desert above the

electroweak scale, or whether EWSB is only a small part of rich short-distance dynamics.

Note added: While this paper was in preparation, we learned of Ref. [43], which also

envisions a novel use of the dual magnetic gauge group.
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A. The Theory with Nf = 7, Nc = 5

In this appendix, we provide a detailed accounting of the states and charge assignments for

the minimal theory with Nf = 7, Nc = 5. This is useful for determining the appropriate

U(1) charge assignments, and hence the corresponding SM charges of various TeV-scale

exotics. We use the notation of previous sections but decompose the fields according to

their SU(2)F×SU(3)C charges. For a fundamental Q of SU(Nf−1)D, we use the subscript

notation

Q =



Q2

Q3

Q1


 . (A.1)
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SU(2)M SU(3)C SU(2)F U(1)V U(1)H
Hu 2 1 1 +1/3 +1/6

Hd 2 1 1 −1/3 −1/6

σ 2 1 2 +1/3 −1/3

σ 2 1 2 −1/3 +1/3

ρ3 2 3 1 +1/3 −1/6

ρ3 2 3 1 −1/3 +1/6

ρ1 2 1 1 +1/3 +1/6

ρ1 2 1 1 −1/3 −1/6

N 1 1 1 0 0

Y 1 1 3⊕ 1 0 0

Z3 1 3 2 0 −1/6

Z3 1 3 2 0 +1/6

Z1 1 1 2 0 −1/2

Z1 1 1 2 0 +1/2

X8 1 8⊕ 1 1 0 0

X1 1 1 1 0 0

X3 1 3 1 0 −1/3

X3 1 3 1 0 +1/3

Σ2 1 1 2 0 +1/2

Σ2 1 1 2 0 −1/2

Σ3 1 3 1 0 +1/3

Σ3 1 3 1 0 −1/3

Σ1 1 1 1 0 0

Σ1 1 1 1 0 0

Table 4: The IR field content for Nf = 7, Nc = 5. Note that U(1)V is proportional to magnetic

quark number. The spectator fields S, S and the SM chiral operators Ou, Od are given in Table 3.

For an adjoint plus singlet of SU(Nf − 3)D, we use

X =

(
X8 X3

X3 X1

)
. (A.2)

We collect the fields of the UV theory in Table 3 and those of the IR theory in Table 4.

B. A Novel Theory with Nf = 6, Nc = 4

Thus far, we have taken care to avoid the case of Nf = 6, Nc = 4, for which Nf = 3
2Nc.

This theory still possesses an IR free dual description, as the IR gauge coupling runs free

at two loops. However, it also possesses a marginal nonperturbative superpotential of the

form

WNP = 2(h6N det Φ)1/2. (B.1)
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Given that the superpotential is marginal, it is natural to worry that there are no metastable

nonsupersymmetric vacua, since additional F -terms may be cancelled off at tree level by

giving vevs to N and Φ. While it is certainly the case that this nonperturbative superpoten-

tial leads to additional supersymmetric vacua, we will argue that these vacua may be made

parametrically distant from the metastable nonsupersymmetric vacuum. The key feature

is that the hierarchy of scales between the SUSY-breaking and EWSB sectors pushes these

supersymmetric vacua out to large field values and allows for local nonsupersymmetric

vacua, much as in the case for dynamical SUSY breaking with a quadratic superpotential

deformation [17].

This vacuum structure is attractive for two reasons. The first is that it leads to

spontaneous R-symmetry breaking in the SUSY-breaking sector without introducing any

further quadratic deformations of the SUSY-breaking fields; this is simply because the

R-breaking nonperturbative superpotential in this theory is marginal and hence induces

R-symmetry breaking in the local vacuum.13 The second is that this renders the theory

with Nf = 6, Nc = 4 viable for SUSY breaking and EWSB (in a limited sense, which we

will make clear shortly). This theory possesses sufficiently few additional fields charged

under the SM that there are no Landau poles in the SM gauge couplings up to the Planck

scale. However, the tradeoff of exploiting this vacuum structure is that EWSB is entirely

MSSM-like (albeit still with a large correction to the Higgs quartic).

For simplicity, let us first consider the case where mN is large (� µ1, µ2) but the

hierarchy between mN and µN is such that µH ≡ µ2
N/mN ∼ mW . This corresponds to

a mass term for the magnetic quarks Hu, Hd. Integrating out N at the scale mN , the IR

theory has a dynamical superpotential

WNP = 2(h5µH det Φ)1/2. (B.2)

Adding this relevant contribution to our IR superpotential leads to a supersymmetric vac-

uum at Φ ∼ 1
hµ2(µ2/µH)1/3. However, we will now show that there is also a metastable

nonsupersymmetric vacuum closer to the origin.

We can determine the location of this vacuum by turning on a nonsupersymmetric CW

mass for Φ in the scalar potential, ∼ m2
CW|Φ|2, originating from the nonzero F -terms in

our SUSY-breaking sector. A metastable vacuum arises from the competition between this

soft mass and the leading tachyonic term for Φ. The ensuing minimum of the potential lies

at

Φ ∼ 1

h
µH

(
h2µ2

mCW

)4

. (B.3)

Since mCW is suppressed by a loop factor b ≡ log 4−1
4π2 relative to µ2 (recall mCW =

√
bh2µ2),

this means the potential turns around only at large field values. For this analysis to be

correct, we require first

µH

(
h2µ2

mCW

)4

. h2µ2. (B.4)

13In the analysis below, we will retain one R-breaking term (mN ) as a calculational handle.
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This is the condition that the CW contribution is still significant where the potential turns

around, since the CW potential falls off once we go above the mass scale of the fields running

in the loop. This amounts to requiring µH ≤ h2b2µ2. We also require the minimum to lie

closer to the origin than the SUSY minimum. This condition corresponds to

µH <
1

h2

m3
CW

hµ2
2

, (B.5)

and hence µH < b3/2µ2. This is typically a weaker condition than the CW condition for

h ∼ 1.

We must also verify that the magnetic quarks are not tachyonic in this vacuum; indeed,

their masses are positive in the vicinity of µH ∼ h2b2µ2, so the vacuum is metastable as

desired. The vev of Φ in this vacuum is 〈Φ〉 ∼ hµ2 which gives a large spontaneous R-

symmetry breaking. This results in gaugino masses that are the same size as the scalar

soft masses.

Finally, we must verify that the metastable vacuum is sufficiently long-lived. The

bounce action for tunneling into the supersymmetric vacuum in the square approximation

is

B ∼ 2π2 1

h6

(
µ2

µH

)4/3

∼ 2π2

b8/3
, (B.6)

which is parametrically large and suppresses tunneling exponentially. Thus, the lifetime of

the metastable vacuum is significantly longer than the age of the universe.

This analysis required mN sufficiently large that we could integrate out N and neglect

its dynamics in the local vacuum. While this limit is perfectly valid, it removes the NMSSM-

like features of the theory at a high energy, leading merely to an MSSM-like Higgs sector

with modified D-terms in the IR. One might hope that this attractive vacuum structure

might persist for smaller values of mN . However, while there is still a metastable vacuum

parametrically distant from the supersymmetric vacua in this limit, the vacuum energy is

minimized by giving an O(hµ2) vev to N . This vev leads to a µ-term that is far too large

for natural EWSB. Hence viable SUSY breaking and EWSB in the theory with Nf = 6

and Nc = 4 requires large values of mN , leaving only the non-decoupling D-term as a

low-energy signature of the UV dynamics.

C. Spectrum for General Nf

Given the intertwined dynamics of duality, SUSY breaking, and EWSB, it is useful to

account for the full spectrum of dynamical fields and their masses for general Nf . Here, we

have organized the fields by their transformation properties under SU(2)L×SU(Nf −3)D;

SM charges may be obtained by decomposing representations accordingly after gauging

SU(3)C ⊂ SU(Nf − 3)D and as well as U(1)V and U(1)H . The fermionic spectrum is

listed in Table 5, while the bosonic spectrum is listed in Table 6. In addition to the

matter listed in these tables arising from the chiral multiplets of the theory, there are

heavy vector multiplets of (SU(2)M × SU(2)F )/SU(2)L with mass
√

2g2
M + 2g2

Fµ1 and of
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Weyl d.o.f. mass SU(Nf − 3)D SU(2)L
trX 1 0 1 1

X ′ (Nf − 3)2 − 1 (Nf − 3)γh2mΦ Adj. 1

4 O(hµ1) 1 3+1

Y, 4 O(hµ1) 1 3+1

σ, σ 3
√

2g2
M + 2g2

Fµ1 1 3

1
√

2g2
V + 2g2

Hµ1 1 1

Z,Z, 4(Nf − 3) O(hµ1) �+� 2 + 2

ρ, ρ 4(Nf − 3) O(hµ1) �+� 2 + 2

N 1 O(mW ) 1 1

Hu, Hd 4 O(mW ) 1 2 + 2

Σ,Σ, 2(Nf − 1) λhΛ �+� 2 + 2

S, S 2(Nf − 1) λhΛ �+� 2 + 2

Table 5: Fermionic field content for general Nf . The mass eigenstates on the right side of the table

are linear combinations of the gauge eigenstates listed on the left side. Some of the σ, σ modes get

Dirac masses with the heavy SU(2) and U(1) gauginos.

Real d.o.f. mass SU(Nf − 3)D SU(2)L
trX 1 O(mCW) 1 1

1 O(
√
h3mΦµ2

2/〈X〉) 1 1

X ′ 2(Nf − 3)2 − 2 O(mCW) Adj. 1

8 O(hµ1) 1 3+1

Y, 8 O(hµ1) 1 3+1

σ, σ 6 O(
√

2g2
M + 2g2

Fµ1) 1 3

2 O(
√

2g2
V + 2g2

Hµ1) 1 1

Z,Z, 8(Nf − 3) O(hµ1) �+� 2 + 2

ρ, ρ 4(Nf − 3) O(hµ1) �+� 2 + 2

4(Nf − 3) O(hµ1) �+� 2 + 2

N 2 O(mW ) 1 1

Hu, Hd 8 O(mW ) 1 2 + 2

Σ,Σ, 4(Nf − 1) λhΛ �+� 2 + 2

S, S 4(Nf − 1) λhΛ �+� 2 + 2

Table 6: Bosonic field content for general Nf . The mass eigenstates on the right side of the table

are linear combinations of the gauge eigenstates listed on the left side. The representations in the

last two columns correspond to complex scalars, with the exception of the pseudo-goldstones and

sgoldstones of ρ, ρ̄, which correspond to real scalars. Some of the σ, σ modes get masses because

they are eaten by the heavy SU(2) and U(1) gauge bosons.

(U(1)H × U(1)V )/U(1)Y with mass
√

2g2
V + 2g2

Hµ1. The orthogonal vector multiplets of

SU(2)L × U(1)Y are massless prior to electroweak symmetry breaking.

– 30 –



References

[1] R. Harnik, G. D. Kribs, D. T. Larson, and H. Murayama, The Minimal supersymmetric fat

Higgs model, Phys.Rev. D70 (2004) 015002, [hep-ph/0311349].

[2] S. Chang, C. Kilic, and R. Mahbubani, The New fat Higgs: Slimmer and more attractive,

Phys.Rev. D71 (2005) 015003, [hep-ph/0405267].

[3] A. Delgado and T. M. Tait, A Fat Higgs with a Fat top, JHEP 0507 (2005) 023,

[hep-ph/0504224].

[4] M. Berkooz, P. L. Cho, P. Kraus, and M. J. Strassler, Dual descriptions of SO(10) SUSY

gauge theories with arbitrary numbers of spinors and vectors, Phys.Rev. D56 (1997)

7166–7182, [hep-th/9705003].

[5] S. Samuel, BOSONIC TECHNICOLOR, Nucl. Phys. B347 (1990) 625–650.

[6] M. Dine, A. Kagan, and S. Samuel, NATURALNESS IN SUPERSYMMETRY, OR

RAISING THE SUPERSYMMETRY BREAKING SCALE, Phys. Lett. B243 (1990)

250–256.

[7] M. A. Luty, J. Terning, and A. K. Grant, Electroweak symmetry breaking by strong

supersymmetric dynamics at the TeV scale, Phys.Rev. D63 (2001) 075001, [hep-ph/0006224].

[8] H. Murayama, Technicolorful supersymmetry, hep-ph/0307293.

[9] S. Schafer-Nameki, C. Tamarit, and G. Torroba, A Hybrid Higgs, JHEP 1103 (2011) 113,

[arXiv:1005.0841].

[10] S. Schafer-Nameki, C. Tamarit, and G. Torroba, Naturalness from runaways in direct

mediation, Phys.Rev. D83 (2011) 035016, [arXiv:1011.0001].

[11] H. Fukushima, R. Kitano, and M. Yamaguchi, SuperTopcolor, JHEP 01 (2011) 111,

[arXiv:1012.5394].

[12] N. Seiberg, Electric - magnetic duality in supersymmetric nonAbelian gauge theories,

Nucl.Phys. B435 (1995) 129–146, [hep-th/9411149].

[13] C. F. Kolda and J. March-Russell, Low-energy signatures of semi-perturbative unification,

Phys. Rev. D55 (1997) 4252–4261, [hep-ph/9609480].

[14] S. R. Behbahani, N. Craig, and G. Torroba, Single-sector supersymmetry breaking, chirality,

and unification, Phys.Rev. D83 (2011) 015004, [arXiv:1009.2088].

[15] K. A. Intriligator, N. Seiberg, and D. Shih, Dynamical SUSY breaking in meta-stable vacua,

JHEP 04 (2006) 021, [hep-th/0602239].

[16] D. Green, A. Katz, and Z. Komargodski, Direct Gaugino Mediation, arXiv:1008.2215.

[17] R. Essig, J.-F. Fortin, K. Sinha, G. Torroba, and M. J. Strassler, Metastable supersymmetry

breaking and multitrace deformations of SQCD, JHEP 03 (2009) 043, [arXiv:0812.3213].

[18] S. R. Coleman and E. J. Weinberg, Radiative Corrections as the Origin of Spontaneous

Symmetry Breaking, Phys.Rev. D7 (1973) 1888–1910.

[19] C. Tamarit, Decays of metastable vacua in SQCD, arXiv:1105.3222.

[20] E. Gorbatov and M. Sudano, Sparticle Masses in Higgsed Gauge Mediation, JHEP 10 (2008)

066, [arXiv:0802.0555].

– 31 –

http://arxiv.org/abs/hep-ph/0311349
http://arxiv.org/abs/hep-ph/0405267
http://arxiv.org/abs/hep-ph/0504224
http://arxiv.org/abs/hep-th/9705003
http://arxiv.org/abs/hep-ph/0006224
http://arxiv.org/abs/hep-ph/0307293
http://arxiv.org/abs/1005.0841
http://arxiv.org/abs/1011.0001
http://arxiv.org/abs/1012.5394
http://arxiv.org/abs/hep-th/9411149
http://arxiv.org/abs/hep-ph/9609480
http://arxiv.org/abs/1009.2088
http://arxiv.org/abs/hep-th/0602239
http://arxiv.org/abs/1008.2215
http://arxiv.org/abs/0812.3213
http://arxiv.org/abs/1105.3222
http://arxiv.org/abs/0802.0555


[21] A. Giveon, A. Katz, and Z. Komargodski, On SQCD with massive and massless flavors,

JHEP 0806 (2008) 003, [arXiv:0804.1805].

[22] A. Giveon, A. Katz, Z. Komargodski, and D. Shih, Dynamical SUSY and R-symmetry

breaking in SQCD with massive and massless flavors, JHEP 0810 (2008) 092,

[arXiv:0808.2901].

[23] P. Batra, A. Delgado, D. E. Kaplan, and T. M. Tait, The Higgs mass bound in gauge

extensions of the minimal supersymmetric standard model, JHEP 0402 (2004) 043,

[hep-ph/0309149].

[24] A. Maloney, A. Pierce, and J. G. Wacker, D-terms, unification, and the Higgs mass, JHEP

0606 (2006) 034, [hep-ph/0409127].

[25] N. Craig, D. Green, and A. Katz, (De)Constructing a Natural and Flavorful Supersymmetric

Standard Model, arXiv:1103.3708.

[26] M. Dine, N. Seiberg, and S. Thomas, Higgs physics as a window beyond the MSSM

(BMSSM), Phys.Rev. D76 (2007) 095004, [arXiv:0707.0005].

[27] H. Pagels and J. R. Primack, Supersymmetry, Cosmology and New TeV Physics, Phys. Rev.

Lett. 48 (1982) 223.

[28] M. Viel, J. Lesgourgues, M. G. Haehnelt, S. Matarrese, and A. Riotto, Constraining warm

dark matter candidates including sterile neutrinos and light gravitinos with WMAP and the

Lyman- alpha forest, Phys. Rev. D71 (2005) 063534, [astro-ph/0501562].

[29] S. Dimopoulos, M. Dine, S. Raby, and S. D. Thomas, Experimental Signatures of Low Energy

Gauge Mediated Supersymmetry Breaking, Phys. Rev. Lett. 76 (1996) 3494–3497,

[hep-ph/9601367].

[30] S. Ambrosanio, G. L. Kane, G. D. Kribs, S. P. Martin, and S. Mrenna, Supersymmetric

analysis and predictions based on the CDF eeγγ + missing ET event, Phys. Rev. Lett. 76

(1996) 3498–3501, [hep-ph/9602239].

[31] S. Dimopoulos, S. D. Thomas, and J. D. Wells, Implications of low energy supersymmetry

breaking at the Tevatron, Phys. Rev. D54 (1996) 3283–3288, [hep-ph/9604452].

[32] S. Ambrosanio, G. L. Kane, G. D. Kribs, S. P. Martin, and S. Mrenna, Search for

supersymmetry with a light gravitino at the Fermilab Tevatron and CERN LEP colliders,

Phys. Rev. D54 (1996) 5395–5411, [hep-ph/9605398].

[33] P. Meade, N. Seiberg, and D. Shih, General Gauge Mediation, Prog. Theor. Phys. Suppl. 177

(2009) 143–158, [arXiv:0801.3278].

[34] M. Buican, P. Meade, N. Seiberg, and D. Shih, Exploring General Gauge Mediation, JHEP

03 (2009) 016, [arXiv:0812.3668].

[35] CMS Collaboration, S. Chatrchyan et al., Search for Supersymmetry in pp Collisions at

sqrt(s) = 7 TeV in Events with Two Photons and Missing Transverse Energy,

arXiv:1103.0953.

[36] M. Fairbairn et al., Stable massive particles at colliders, Phys. Rept. 438 (2007) 1–63,

[hep-ph/0611040].

[37] K. Jedamzik, Did something decay, evaporate, or annihilate during big bang nucleosynthesis?,

Phys. Rev. D70 (2004) 063524, [astro-ph/0402344].

– 32 –

http://arxiv.org/abs/0804.1805
http://arxiv.org/abs/0808.2901
http://arxiv.org/abs/hep-ph/0309149
http://arxiv.org/abs/hep-ph/0409127
http://arxiv.org/abs/1103.3708
http://arxiv.org/abs/0707.0005
http://arxiv.org/abs/astro-ph/0501562
http://arxiv.org/abs/hep-ph/9601367
http://arxiv.org/abs/hep-ph/9602239
http://arxiv.org/abs/hep-ph/9604452
http://arxiv.org/abs/hep-ph/9605398
http://arxiv.org/abs/0801.3278
http://arxiv.org/abs/0812.3668
http://arxiv.org/abs/1103.0953
http://arxiv.org/abs/hep-ph/0611040
http://arxiv.org/abs/astro-ph/0402344


[38] S. Bailly, K. Jedamzik, and G. Moultaka, Gravitino Dark Matter and the Cosmic Lithium

Abundances, Phys. Rev. D80 (2009) 063509, [arXiv:0812.0788].

[39] CMS Collaboration, V. Khachatryan et al., Search for Heavy Stable Charged Particles in pp

collisions at sqrt(s)=7 TeV, JHEP 03 (2011) 024, [arXiv:1101.1645].

[40] ATLAS Collaboration, G. Aad et al., Search for stable hadronising squarks and gluinos with

the ATLAS experiment at the LHC, arXiv:1103.1984.

[41] A. Arvanitaki, S. Dimopoulos, A. Pierce, S. Rajendran, and J. G. Wacker, Stopping gluinos,

Phys. Rev. D76 (2007) 055007, [hep-ph/0506242].

[42] CMS Collaboration, V. Khachatryan et al., Search for Stopped Gluinos in pp collisions at

sqrt s = 7 TeV, Phys. Rev. Lett. 106 (2011) 011801, [arXiv:1011.5861].

[43] C. Csaki, Y. Shirman, and J. Terning, “A Seiberg Dual for the MSSM: Partially Composite

W and Z.” To appear.

– 33 –

http://arxiv.org/abs/0812.0788
http://arxiv.org/abs/1101.1645
http://arxiv.org/abs/1103.1984
http://arxiv.org/abs/hep-ph/0506242
http://arxiv.org/abs/1011.5861

