6 research outputs found

    Nuculidae (Bivalvia) in the Cape Melville Formation, King George Island, Antarctica, with an overview of the bivalve fauna

    Get PDF
    Nuculid bivalves of the Cape Melville Formation (Early Miocene, King George Island) are reviewed. Ten bivalve taxa are listed from the formation in the families Nuculidae (two species), Sareptidae, Malletiidae, Limopsidae (two species), Limidae, Pectinidae, Hiatellidae, and Periplomatidae. The Nuculidae consist of two species of Leionucula Quenstedt, 1930. One of these, L. melvilleana n. sp., is described and the other consists of the two species named previously by Anelli et al. (2006), which are demonstrated to be synonymous and are assigned to the species Leionucula frigida (Anelli, Rocha-Campos, Santos, Perinotto & Quaglio 2006). This assemblage, dominated by protobranchs (89% of specimens), is a typical fauna of offshore soft substrates, with a few specimens transported from hard substrates nearby. The diversity of Nuculidae has decreased in the Antarctic region through the Cenozoic

    Empirical and theoretical study of atelostomate (Echinoidea, Echinodermata) plate architecture: using graph analysis to reveal structural constraints.

    No full text
    24 pagesInternational audienceDescribing patterns of connectivity among organs is essential for identifying anatomical homologies among taxa. It is also critical for revealing morphogenetic processes and the associated constraints that control the morphological diversification of clades. This is particularly relevant for studies of organisms with skeletons made of discrete elements such as arthropods, vertebrates, and echinoderms. Nonetheless, relatively few studies devoted to morphological disparity have considered connectivity patterns as a level of morphological organization or developed comparative frameworks with proper tools. Here, we analyze connectivity patterns among apical plates in Atelostomata, the most diversified clade among irregular echinoids. The clade comprises approximately 1600 fossil and Recent species (e.g., 25% of post-Paleozoic species of echinoids) and shows high levels of morphological disparity. Plate connectivity patterns were analyzed using tools and statistics of graph theory. To describe and explore the diversity of connectivity patterns among plates, we symbolized each pattern as a graph in which plates are coded as nodes that are connected pairwise by edges. We then generated a comparative framework as a morphospace of connections, in which the disparity of plate patterns observed in nature was mapped and analyzed. Main results show that apical plate patterns are both highly disparate between and within atelostomate groups and limited in number; overall, they also constitute small, compact, and simple structures compared to possible random patterns. Main traits of the evolution of apical plate patterns reveal the existence of strong morphogenetic constraints that are phylogenetically determined. In contrast, evolutionary radiations within atelostomates were accompanied by a clear increase in disparity, suggesting a release of some constraints at the origin of clades
    corecore