45 research outputs found

    La publicació de col·leccions documentals

    Get PDF

    The diagnosis of anti-LGI1 encephalitis varies with the type of immunodetection assay and sample examined

    Full text link
    Detection of Leucine-rich glioma inactivated 1 (LGI1) antibodies in patients with suspected autoimmune encephalitis is important for diagnostic confirmation and prompt implementation of immunomodulatory treatment. However, the clinical laboratory diagnosis can be challenging. Previous reports have suggested that the type of test and patient's sample (serum or CSF) have different clinical performances, however, there are no studies comparing different diagnostic tests on paired serum/CSF samples of patients with anti-LGI1 encephalitis. Here, we assessed the clinical performance of a commercial and an in house indirect immunofluorescent cell based assays (IIF-CBA) using paired serum/CSF of 70 patients with suspected anti-LGI1 encephalitis and positive rat brain indirect immunohistochemistry (IIHC). We found that all (100%) patients had CSF antibodies when the in house IIF-CBA was used, but only 88 (83%) were positive if the commercial test was used. In contrast, sera positivity rate was higher with the commercial test (94%) than with the in house assay (86%). If both serum and CSF were examined with the commercial IIFA-CBA, 69/70 (98.5%) patients were positive in at least one of the samples. These findings are clinically important for centers in which rat brain IIHC and in house IIFA-CBA are not available. Moreover, the observation that all patients with anti-LGI1 encephalitis have antibodies in CSF is in line with the concept that these antibodies are pathogenic.Copyright © 2022 Muñoz-Sánchez, Planagumà, Naranjo, Couso, Sabater, Guasp, Martínez-Hernández, Graus, Dalmau and Ruiz-García

    Allosteric Modulation of NMDARs Reverses Patients' Autoantibody Effects in Mice

    Get PDF
    Background and Objectives To demonstrate that an analog (SGE-301) of a brain-derived cholesterol metabolite, 24(S)- hydroxycholesterol, which is a selective positive allosteric modulator (PAM) of NMDA re- ceptors (NMDARs), is able to reverse the memory and synaptic alterations caused by CSF from patients with anti-NMDAR encephalitis in an animal model of passive transfer of antibodies. Methods Four groups of mice received (days 1-14) patients' or controls' CSF via osmotic pumps connected to the cerebroventricular system and from day 11 were treated with daily sub- cutaneous injections of SGE-301 or vehicle (no drug). Visuospatial memory, locomotor activity (LA), synaptic NMDAR cluster density, hippocampal long-term potentiation (LTP), and paired-pulse facilitation (PPF) were assessed on days 10, 13, 18, and 26 using reported techniques. Results On day 10, mice infused with patients' CSF, but not controls' CSF, presented a significant visuospatial memory deficit, reduction of NMDAR clusters, and impairment of LTP, whereas LA and PPF were unaffected. These alterations persisted until day 18, the time of maximal deficits in this model. In contrast, mice that received patients' CSF but from day 11 were treated with SGE-301 showed memory recovery (day 13), and on day 18, all paradigms (memory, NMDAR clusters, and LTP) had reversed to values similar to those of controls. On day 26, no differences were observed among experimental groups. Discussion An oxysterol biology-based PAM of NMDARs is able to reverse the synaptic and memory deficits caused by CSF from patients with anti-NMDAR encephalitis. These findings suggest a novel adjuvant treatment approach that deserves future clinical evaluation

    LGI1 antibodies alter Kv1.1 and AMPA receptors changing synaptic excitability, plasticity and memory

    Get PDF
    Leucine-rich glioma-inactivated 1 (LGI1) is a secreted neuronal protein that forms a trans-synaptic complex that includes the presynaptic disintegrin and metalloproteinase domain-containing protein 23 (ADAM23), which interacts with voltage-gated potassium channels Kv1.1, and the postsynaptic ADAM22, which interacts with AMPA receptors. Human autoantibodies against LGI1 associate with a form of autoimmune limbic encephalitis characterized by severe but treatable memory impairment and frequent faciobrachial dystonic seizures. Although there is evidence that this disease is immune-mediated, the underlying LGI1 antibody-mediated mechanisms are unknown. Here, we used patient-derived immunoglobulin G (IgG) antibodies to determine the main epitope regions of LGI1 and whether the antibodies disrupt the interaction of LGI1 with ADAM23 and ADAM22. In addition, we assessed the effects of patient-derived antibodies on Kv1.1, AMPA receptors, and memory in a mouse model based on cerebroventricular transfer of patient-derived IgG. We found that IgG from all patients (n = 25), but not from healthy participants (n = 20), prevented the binding of LGI1 to ADAM23 and ADAM22. Using full-length LGI1, LGI3, and LGI1 constructs containing the LRR1 domain (EPTP1-deleted) or EPTP1 domain (LRR3-EPTP1), IgG from all patients reacted with epitope regions contained in the LRR1 and EPTP1 domains. Confocal analysis of hippocampal slices of mice infused with pooled IgG from eight patients, but not pooled IgG from controls, showed a decrease of total and synaptic levels of Kv1.1 and AMPA receptors. The effects on Kv1.1 preceded those involving the AMPA receptors. In acute slice preparations of hippocampus, patch-clamp analysis from dentate gyrus granule cells and CA1 pyramidal neurons showed neuronal hyperexcitability with increased glutamatergic transmission, higher presynaptic release probability, and reduced synaptic failure rate upon minimal stimulation, all likely caused by the decreased expression of Kv1.1. Analysis of synaptic plasticity by recording field potentials in the CA1 region of the hippocampus showed a severe impairment of long-term potentiation. This defect in synaptic plasticity was independent from Kv1 blockade and was possibly mediated by ineffective recruitment of postsynaptic AMPA receptors. In parallel with these findings, mice infused with patient-derived IgG showed severe memory deficits in the novel object recognition test that progressively improved after stopping the infusion of patient-derived IgG. Different from genetic models of LGI1 deficiency, we did not observe aberrant dendritic sprouting or defective synaptic pruning as potential cause of the symptoms. Overall, these findings demonstrate that patient-derived IgG disrupt presynaptic and postsynaptic LGI1 signalling, causing neuronal hyperexcitability, decreased plasticity, and reversible memory deficits

    Placental transfer of NMDAR antibodies causes reversible alterations in mice

    Get PDF
    Objective: To determine whether maternofetal transfer of NMDA receptor (NMDAR) antibodies has pathogenic effects on the fetus and offspring, we developed a model of placental transfer of antibodies. Methods: Pregnant C57BL/6J mice were administered via tail vein patients' or controls' immunoglobulin G (IgG) on days 14-16 of gestation, when the placenta is able to transport IgG and the immature fetal blood-brain barrier is less restrictive to IgG crossing. Immunohistochemical and DiOlistic (gene gun delivery of fluorescent dye) staining, confocal microscopy, standardized developmental and behavioral tasks, and hippocampal long-term potentiation were used to determine the antibody effects. Results: In brains of fetuses, patients' IgG, but not controls' IgG, bound to NMDAR, causing a decrease in NMDAR clusters and cortical plate thickness. No increase in neonatal mortality was observed, but offspring exposed in utero to patients' IgG had reduced levels of cell-surface and synaptic NMDAR, increased dendritic arborization, decreased density of mature (mushroom-shaped) spines, microglial activation, and thinning of brain cortical layers II-IV with cellular compaction. These animals also had a delay in innate reflexes and eye opening and during follow-up showed depressive-like behavior, deficits in nest building, poor motor coordination, and impaired social-spatial memory and hippocampal plasticity. Remarkably, all these paradigms progressively improved (becoming similar to those of controls) during follow-up until adulthood. Conclusions: In this model, placental transfer of patients' NMDAR antibodies caused severe but reversible synaptic and neurodevelopmental alterations. Reversible antibody effects may contribute to the infrequent and limited number of complications described in children of patients who develop anti-NMDAR encephalitis during pregnancy

    ETV5 i RUNX1, nous factors de transcripció implicats en la invasió miometrial del carcinoma endometrial

    Get PDF
    Actualment, en càncer d'endometri, està àmpliament acceptat el model dualístic que, atenent a bases morfològiques, diferencia tumors de tipus i o endometrioides dels de tipus ii o no endometrioides. La genètica molecular ha aportat dades que donen suport a aquest model dualístic de la tumorigènesi endometrial i algunes claus per a poder especular sobre la seqüència temporal de les alteracions moleculars que defineixen les rutes tumorigèniques. En els càncers endometrials endometrioides, o de tipus i, es coneixen alteracions majors, com poden ser el silenciament del gen PTEN, la inestabilitat de microsatèll. its associada a defectes en els gens reparadors de DNA, o mutacions al gen K-ras. Aquestes alteracions defineixen la progressió de l'endometri normal cap a la hiperplàsia i posteriorment cap al carcinoma. Recentment, l'ús de la tecnologia de microxips de cDNA per a identificar les diferències en els patrons d'expressió gènica entre els diferents tipus histològics de càncer d'endometri han permès la identificació de gens expressats diferencialment que podrien ajudar-nos a entendre les diferències en la biologia i el pronòstic clínic dels diferents histiotips tumorals. En el nostre laboratori hem aïllat i caracteritzat dos nous factors de transcripció, ETV5 i RUNX1, que estan associats amb els passos inicials de la infiltració miometrial en el càncer d'endometri endometrioide. Aquests estudis, i els d'altres gens implicats en el control de la mitosi com a mecanisme major de carcinogènesi en els càncers d'endometri no endometrioides, representen exemples de la utilitat dels estudis genètics amplis per a comprendre el procés de tumorigènesi i les rutes implicades en la patogènesi molecular del càncer d'endometri.A dualistic model, which has been established on a morphological basis and that differentiates type i endometrioid from type ii non-endometrioid endometrial cancer, is widely accepted. Molecular genetics have provided us with data supporting the dualistic model of endometrial tumorigenesis and with some clues to speculate about the sequence of the molecular alterations defining the tumorigenesis pathways. In type i endometrioid endometrial cancer, PTEN gene silencing, microsatellite instability associated with defects in DNA mismatch repair genes, or mutations in the K-ras gene are the known major alterations defining the progression from normal endometrium to hyperplasia and then on to carcinoma. Recently, cDNA microarray technology for identifying the differences in gene expression patterns between the histological types of endometrial cancer have permitted the identification of differentially expressed genes that could help us to understand differences in the biology and the clinical outcome between histiotypes. In our laboratory, we have recently isolated and characterized two new transcription factors, ETV5 and RUNX1, which expression appears to be associated with initial steps of myometrial infiltration in endometrioid endometrial carcinoma. These studies, as well as those on other genes involved in the mitotic checkpoint as a major mechanism of carcinogenesis in non-endometrioid endometrial cancer, represent examples of how useful large genetic screenings can be for understanding the tumorigenesis process and the future directions in the molecular pathogenesis of endometrial cancer

    Allosteric modulation of NMDA receptors prevents the antibody effects of patients with anti-NMDAR encephalitis

    Get PDF
    Anti-N-Methyl-D-Aspartate Receptor (NMDAR) encephalitis is an immune-mediated disease characterized by a complex neuropsychiatric syndrome in association with an antibody-mediated decrease of NMDAR. About 85% of patients respond to immunotherapy (and removal of an associated tumor if it applies), but it often takes several months or more than 1 year for patients to recover. There are no complementary treatments, beyond immunotherapy, to accelerate this recovery. Previous studies showed that SGE-301, a synthetic analog of 24(S)-hydroxycholesterol, which is a potent, and selective positive allosteric modulator of NMDAR, reverted the memory deficit caused by phencyclidine (a non-competitive antagonist of NMDAR), and prevented the NMDAR dysfunction caused by patients' NMDAR antibodies in cultured neurons. An advantage of SGE-301 is that it is optimized for systemic delivery such that plasma and brain exposures are sufficient to modulate NMDAR activity. Here, we used SGE-301 to confirm that in cultured neurons it prevented the antibody-mediated reduction of receptors, and then we applied it to a previously reported mouse model of passive cerebroventricular transfer of patients' CSF antibodies. Four groups were established: mice receiving continuous (14-day) infusion of patients' or controls' CSF, treated with daily subcutaneous administration of SGE-301 or vehicle (no drug). The effects on memory were examined with the novel object location (NOL) test at different time points, and the effects on synaptic levels of NMDAR (assessed with confocal microscopy) and plasticity (long-term potentiation [LTP]) were examined in the hippocampus on day 18, which in this model corresponds to the last day of maximal clinical and synaptic alterations. As expected, mice infused with patients' CSF antibodies, but not those infused with controls' CSF, and treated with vehicle developed severe memory deficit without locomotor alteration, accompanied by a decrease of NMDAR clusters and impairment of LTP. All antibody-mediated pathogenic effects (memory, synaptic NMDAR, LTP) were prevented in the animals that were treated with SGE-301, despite that this compound did not antagonize antibody binding. Additional investigations on the potential mechanisms related to these SGE-301 effects showed that (1) in cultured neurons SGE-301 prolonged the decay time of NMDAR-dependent spontaneous excitatory postsynaptic currents suggesting a prolonged open time of the channel, and (2) it significantly decreased the internalization of antibody-bound receptors suggesting that additional, yet unclear mechanisms, contribute in keeping unchanged the surface NMDAR density. Overall, these findings suggest that SGE-301, or similar modulators of NMDAR, could potentially serve as complementary treatment for anti-NMDAR encephalitis and deserve future investigations

    Seizure-related 6 homolog like 2 autoimmunity: Neurologic syndrome and antibody effects

    Get PDF
    Objective: To describe the clinical syndrome of 4 new patients with seizure-related 6 homolog like 2 antibodies (SEZ6L2-abs), study the antibody characteristics, and evaluate their effects on neuronal cultures. Methods: SEZ6L2-abs were initially identified in serum and CSF of a patient with cerebellar ataxia by immunohistochemistry on rat brain sections and immunoprecipitation from rat cerebellar neurons. We used a cell-based assay (CBA) of HEK293 cells transfected with SEZ6L2 to test the serum of 95 patients with unclassified neuropil antibodies, 331 with different neurologic disorders, and 10 healthy subjects. Additional studies included characterization of immunoglobulin G (IgG) subclasses and the effects of SEZ6L2-abs on cultures of rat hippocampal neurons. Results: In addition to the index patient, SEZ6L2-abs were identified by CBA in 3/95 patients with unclassified neuropil antibodies but in none of the 341 controls. The median age of the 4 patients was 62 years (range: 54-69 years), and 2 were female. Patients presented with subacute gait ataxia, dysarthria, and mild extrapyramidal symptoms. Initial brain MRI was normal, and CSF pleocytosis was found in only 1 patient. None improved with immunotherapy. SEZ6L2-abs recognized conformational epitopes. IgG4 SEZ6L2-abs were found in all 4 patients, and it was the predominant subclass in 2. SEZ6L2-abs did not alter the number of total or synaptic SEZ6L2 or the AMPA glutamate receptor 1 (GluA1) clusters on the surface of hippocampal neurons. Conclusions: SEZ6L2-abs associate with a subacute cerebellar syndrome with frequent extrapyramidal symptoms. The potential pathogenic effect of the antibodies is not mediated by internalization of the antigen

    Thymoma and Autoimmune Encephalitis: Clinical Manifestations and Antibodies

    Get PDF
    To report the clinical, neuroimaging, and antibody associations in patients with autoimmune encephalitis (AE) and thymoma.A retrospective cohort study of 43 patients was conducted. Antibody determination and immunoprecipitation to characterize novel antigens were performed using reported techniques.Patients' median age was 52 years (range: 23-88 years). Forty (93%) had neuronal surface antibodies: gamma-aminobutyric acid receptor A (GABAAR) (15), amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor (AMPAR) (13), contactin-associated protein-like 2 (CASPR2) (4), leucine-rich, glioma inactivated 1 (LGI1) (3), glycine receptor (GlyR) (3), and unknown antigens (2). Concurrent antibodies against intracellular antigens occurred in 13 (30%; 9 anti-collapsin response mediator protein 5 [CRMP5]) and were more frequent in anti-AMPAR encephalitis (54% vs 20%; p = 0.037). The most common clinical presentation was encephalitis with multiple T2/fluid-attenuated inversion recovery hyperintense lesions in 23 (53%) patients (15 GABAAR, 5 AMPAR, and 1 unknown neuropil antibody), followed by encephalitis with peripheral nerve hyperexcitability in 7 (16%; 4 CASPR2, 2 LGI1, and 1 unknown antibody), limbic encephalitis in 6 (14%; 4 AMPAR, 1 LGI1, and 1 antibody negative), progressive encephalomyelitis with rigidity and myoclonus in 4 (9%; 3 GlyR and 1 AMPAR antibodies), and encephalitis with normal MRI in 3 (7%; AMPAR antibodies). Anti-GABAAR encephalitis was more prevalent in Japanese patients compared with Caucasians and other ethnicities (61% vs 16%; p = 0.003). In anti-AMPAR encephalitis, 3/4 patients with poor and 0/6 with good outcome had concurrent CRMP5 antibodies (p = 0.033). Immunoprecipitation studies identified metabotropic glutamate receptor 3 antibodies that were additionally found in 5 patients (3 with and 2 without encephalitis).AE in patients with thymoma include several clinical-radiologic syndromes that vary according to the associated antibodies. Anti-GABAAR encephalitis was the most frequent AE and occurred more frequently in Japanese patients

    Filamin A Binds to CCR2B and Regulates Its Internalization

    Get PDF
    The chemokine (C-C motif) receptor 2B (CCR2B) is one of the two isoforms of the receptor for monocyte chemoattractant protein-1 (CCL2), the major chemoattractant for monocytes, involved in an array of chronic inflammatory diseases. Employing the yeast two-hybrid system, we identified the actin-binding protein filamin A (FLNa) as a protein that associates with the carboxyl-terminal tail of CCR2B. Co-immunoprecipitation experiments and in vitro pull down assays demonstrated that FLNa binds constitutively to CCR2B. The colocalization of endogenous CCR2B and filamin A was detected at the surface and in internalized vesicles of THP-1 cells. In addition, CCR2B and FLNa were colocalized in lamellipodia structures of CCR2B-expressing A7 cells. Expression of the receptor in filamin-deficient M2 cells together with siRNA experiments knocking down FLNa in HEK293 cells, demonstrated that lack of FLNa delays the internalization of the receptor. Furthermore, depletion of FLNa in THP-1 monocytes by RNA interference reduced the migration of cells in response to MCP-1. Therefore, FLNa emerges as an important protein for controlling the internalization and spatial localization of the CCR2B receptor in different dynamic membrane structures
    corecore