82 research outputs found

    Phylogenetic prospecting for cryptic species of the genus Merluccius (Actinopterygii: Merlucciidae).

    Get PDF
    Hakes of the genus Merluccius include 11 valid species as well a number of rare morphotypes suspected to be “cryptic species”. Concatenated nucDNA ITS1-rDNA and mtDNA cyt b sequences plus nested ITS1Nes sequences allowed to ascribe 14 specimens of nine rare morphotypes from the South Pacific and the South Atlantic to the phylogenetic backbone of this genus. Bayesian analyses pointed to M. bilinearis and M. albidus as the oldest species of the genus and the New World cluster, respectively. The phylogenetic status of M. angustimanus from the upper Gulf of California suggests its hybrid origin between M. gayi and M. productus from about 0.25 MYA, although an ever since confinement of a subset of those species cannot be ruled out. The molecular phylodiagnostic test suggests a common origin of all rare morphotypes and the absence of cryptic hake species in the Southern Cone. The molecular background of the morphotypes distributed between the Western Pacific South of New Zealand and the western Atlantic South of Argentina is compatible with their hybrid origin between M. gayi and both, M. australis or M. hubbsi, respectively.This research was partially supported with the project LETSHAKE (AGL2013-4846-R) co-funded by MINECO (Ministerio Español de Economía y Competitividad) and EU-FEDER to M.P. as well as with grant (IN607B 2018/14) to M. P. from Xunta de Galicia-Axencia Galega de Innovación. This work was also partly funded with grants from “Consellería de Educación e Ordenación Universitaria Xunta de Galicia (Galician Regional Government) cofunding from the European Regional Development Fund (ERDF) in the framework of the Operational Program Galicia 2014–2020 (CIM-UVIGO), “A way to build Europe”.Versión del edito

    Simulation of the carbon dioxide hydrate-water interfacial energy

    Get PDF
    Hypothesis: Carbon dioxide hydrates are ice-like nonstoichiometric inclusion solid compounds with importance to global climate change, and gas transportation and storage. The thermodynamic and kinetic mechanisms that control carbon dioxide nucleation critically depend on hydrate-water interfacial free energy. Only two independent indirect experiments are available in the literature. Interfacial energies show large uncertainties due to the conditions at which experiments are performed. Under these circumstances, we hypothesize that accurate molecular models for water and carbon dioxide combined with computer simulation tools can offer an alternative but complementary way to estimate interfacial energies at coexistence conditions from a molecular perspective. Calculations: We have evaluated the interfacial free energy of carbon dioxide hydrates at coexistence conditions (three-phase equilibrium or dissociation line) implementing advanced computational methodologies, including the novel Mold Integration methodology. Our calculations are based on the definition of the interfacial free energy, standard statistical thermodynamic techniques, and the use of the most reliable and used molecular models for water (TIP4P/Ice) and carbon dioxide (TraPPE) available in the literature. Findings: We find that simulations provide an interfacial energy value, at coexistence conditions, consistent with the experiments from its thermodynamic definition. Our calculations are reliable since are based on the use of two molecular models that accurately predict: (1) The ice-water interfacial free energy; and (2) the dissociation line of carbon dioxide hydrates. Computer simulation predictions provide alternative but reliable estimates of the carbon dioxide interfacial energy. Our pioneering work demonstrates that is possible to predict interfacial energies of hydrates from a truly computational molecular perspective and opens a new door to the determination of free energies of hydrates.We thank Pedro J. Pérez for the critical reading of the manuscript. We also acknowledge Centro de Supercomputación de Galicia (CESGA, Santiago de Compostela, Spain) and MCIA (Mésocentre de Calcul Intensif Aquitain) of the Universités de Bordeaux and Pau et Pays de l’Adour (France) for providing access to computing facilities. We thank financial support from the Ministerio de Economía, Industria y Competitividad (FIS2017- 89361-C3-1-P), Junta de Andalucía (P20-00363), and Universidad de Huelva (P.O. FEDER UHU-1255522), all three cofinanced by EU FEDER funds. J.A. acknowledges Contrato Predoctoral de Investigación from XIX Plan Propio de Investigación de la Universidad de Huelva and a FPU Grant (Ref. FPU15/03754) from Ministerio de Educación, Cultura y Deporte. J. A., J. M. M., and F. J. B. thankfully acknowledge the computer resources at Magerit and the technical support provided by the Spanish Supercomputing Network (RES) (Project QCM- 2018–2- 0042). Funding for open access charge: Universidad de Huelva / CBU

    Surface waters of the NW Iberian margin: upwelling on the shelf versus outwelling of upwelled waters from the Rías Baixas

    Get PDF
    A set of hydrographic surveys were carried out in the Ría of Vigo (NW Spain) at 2–4 d intervals during four 2–3 week periods in 1997, covering contrasting seasons. Residual exchange fluxes with the adjacent shelf were estimated with a 2-D, non-steady-state, salinity–temperature weighted box model. Exchange fluxes consist of a steady-state term (dependent on the variability of continental runoff) and a non-steady-state term (dependent on the time changes of density gradients in the embayment). More than 95% of the short-time-scale variability of the exchange fluxes in the middle and outer ría can be explained by the non-steady-state term that, in turns, is correlated (R2>75%) with the offshore Ekman transport. Conversely, 96% of the variability of exchange fluxes in the inner ría rely on the steady-state term. The outer and middle ría are under the direct influence of coastal upwelling, which enhances the positive residual circulation pattern by an order of magnitude: from 10 2 to 10 3 m3s−1. On the contrary, downwelling provokes a reversal of the circulation in the outer ría. The position of the downwelling front along the embayment depends on the relative importance of Ekman transport (Qx, m3s−1km−1) and continental runoff (R, m3s−1). When Qx/ R>7±2 the reversal of the circulation affects the middle ría. Our results are representative for the ‘Rías Baixas’, four large coastal indentations in NW Spain. During the upwelling season (spring and summer), 60% of shelf surface waters off the ‘Rías Baixas’ consist of fresh Eastern North Atlantic Central Water (ENACW) upwelled in situ. The remaining 40% consists of upwelled ENACW that previously enters the rías and it is subsequently outwelled after thermohaline modification. During the downwelling season (autumn and winter), 40% of the warm and salty oceanic subtropic surface water, which piled on the shelf by the predominant southerly winds, enters the rias

    Stress Effects on the Mechanisms Regulating Appetite in Teleost Fish

    Get PDF
    The homeostatic regulation of food intake relies on a complex network involving peripheral and central signals that are integrated in the hypothalamus which in turn responds with the release of orexigenic or anorexigenic neuropeptides that eventually promote or inhibit appetite. Under stress conditions, the mechanisms that control food intake in fish are deregulated and the appetite signals in the brain do not operate as in control conditions resulting in changes in the expression of the appetite-related neuropeptides and usually a decreased food intake. The effect of stress on the mechanisms that regulate food intake in fish seems to be mediated in part by the corticotropin-releasing factor (CRF), an anorexigenic neuropeptide involved in the activation of the HPI axis during the physiological stress response. Furthermore, the melanocortin system is also involved in the connection between the HPI axis and the central control of appetite. The dopaminergic and serotonergic systems are activated during the stress response and they have also been related to the control of food intake. In addition, the central and peripheral mechanisms that mediate nutrient sensing capacity and hence implicated in the metabolic control of appetite are inhibited in fish under stress conditions. Finally, stress also affects peripheral endocrine signals such as leptin. In the present minireview, we summarize the knowledge achieved in recent years regarding the interaction of stress with the different mechanisms that regulate food intake in fish

    Environmental Cycles, Melatonin, and Circadian Control of Stress Response in Fish

    Get PDF
    Fish have evolved a biological clock to cope with environmental cycles, so they display circadian rhythms in most physiological functions including stress response. Photoperiodic information is transduced by the pineal organ into a rhythmic secretion of melatonin, which is released into the blood circulation with high concentrations at night and low during the day. The melatonin rhythmic profile is under the control of circadian clocks in most fish (except salmonids), and it is considered as an important output of the circadian system, thus modulating most daily behavioral and physiological rhythms. Lighting conditions (intensity and spectrum) change in the underwater environment and affect fish embryo and larvae development: constant light/darkness or red lights can lead to increased malformations and mortality, whereas blue light usually results in best hatching rates and growth performance in marine fish. Many factors display daily rhythms along the hypothalamus-pituitary-interrenal (HPI) axis that controls stress response in fish, including corticotropin-releasing hormone (Crh) and its binding protein (Crhbp), proopiomelanocortin A and B (Pomca and Pomcb), and plasma cortisol, glucose, and lactate. Many of these circadian rhythms are under the control of endogenous molecular clocks, which consist of self-sustained transcriptional-translational feedback loops involving the cyclic expression of circadian clock genes (clock, bmal, per, and cry) which persists under constant light or darkness. Exposing fish to a stressor can result in altered rhythms of most stress indicators, such as cortisol, glucose, and lactate among others, as well as daily rhythms of most behavioral and physiological functions. In addition, crh and pomca expression profiles can be affected by other factors such as light spectrum, which strongly influence the expression profile of growth-related (igf1a, igf2a) genes. Additionally, the daily cycle of water temperature (warmer at day and cooler at night) is another factor that has to be considered. The response to any acute stressor is not only species dependent, but also depends on the time of the day when the stress occurs: nocturnal species show higher responses when stressed during day time, whereas diurnal fish respond stronger at night. Melatonin administration in fish has sedative effects with a reduction in locomotor activity and cortisol levels, as well as reduced liver glycogen and dopaminergic and serotonergic activities within the hypothalamus. In this paper, we are reviewing the role of environmental cycles and biological clocks on the entrainment of daily rhythms in the HPI axis and stress responses in fish

    Unraveling the periprandial changes in brain serotonergic activity and its correlation with food intake-related neuropeptides in rainbow trout Oncorhynchus mykiss

    Get PDF
    This study explored changes in brain serotonin content and activity together with hypothalamic neuropeptide mRNA abundance around feeding time in rainbow trout, as well as the effect of one-day fasting. Groups of trout fed at two (ZT2) and six (ZT6) hours after lights on were sampled from 90 minutes before to 240 minutes after feeding, while additional groups of non-fed trout were also included in the study. Changes in brain amine and metabolite contents were measured in hindbrain, diencephalon and telencephalon, while in the diencephalon the mRNA abundance of tryptophan hydroxylase ( tph1 , tph2 ), serotonin receptors (5htr1a , 5htr1b and 5htr2c ) and several neuropeptides ( npy , agrp1 , cartpt , pomca1 , crfb ) involved in the control of food intake were also assessed. The results showed changes in the hypothalamic neuropeptides that were consistent with the expected role for each in the regulation of food intake in rainbow trout. Serotonergic activity increased rapidly at the time of food intake in the diencephalon and hindbrain and remained high for much of the postprandial period. This increase in serotonin abundance was concomitant with elevated levels of pomca1 mRNA in the diencephalon, suggesting that serotonin might act on brain neuropeptides to promote a satiety profile. Furthermore, serotonin synthesis and neuronal activity appear to increase already before the time of feeding, suggesting additional functions for this amine before and during food intake. Exploration of serotonin receptors in the diencephalon revealed only small changes for gene expression of 5htr1b and 5htr2c receptors during the postprandial phase. Therefore, the results suggest that serotonin may play a relevant role in the regulation of feeding behavior in rainbow trout during periprandial time, but a better understanding of its interaction with brain centers involved in receiving and processing food-related signals is still needed.Agencia Estatal de Investigación | Ref. PID2022-136288OB-C31Xunta de Galicia | Ref. ED431B 2019/37Agencia Estatal de Investigación | Ref. BES-2017-079708Xunta de Galicia | Ref. ED481B-2022-08

    Influence of Stress on Liver Circadian Physiology. A Study in Rainbow Trout, Oncorhynchus mykiss, as Fish Model

    Get PDF
    In vertebrates stress negatively affects body homeostasis and triggers a battery of metabolic responses, with liver playing a key role. This organ responds with altered metabolism, leading the animal to cope with the stress situation, which involves carbohydrate and lipid mobilization. However, metabolism among other physiological functions is under circadian control within the liver. Then, metabolic homeostasis at system level involves circadian timing systems within tissues and cells, and collaborate with each other. During chronic stress, cortisol maintains the liver metabolic response by modulating carbohydrate- and lipid-related metabolism. Stress also disrupts the circadian oscillator within the liver in mammals, whereas little information is available in other vertebrates, such as fish. To raise the complexity of this process, other candidates may mediate in such effect of stress. In fact, sirtuin1, a link between cellular sensing of energy status and circadian clocks, participates in the response to stress in mammals, but no information is available in fish. Considering the role played by liver in providing energy for the animal to deal with an adverse situation, and the existence of a circadian oscillator within this tissue, jeopardized liver circadian physiology during stress exposure might be expected. Whether the physiological response to stress is a well conserved process through the phylogeny and the mechanisms involved in such response is a question that remains to be elucidated. Then, we provide information at this respect in mammals and show comparable results in rainbow trout as fish animal model. Similar to that in mammals, stress triggers a series of responses in fish that leads the animal to cope with the adverse situation. Stress influences liver physiology in fish, affecting carbohydrate and lipid metabolism-related parameters, and the circadian oscillator as well. In a similar way than that of mammals different mediators participate in the response of liver circadian physiology to stress in fish. Among them, we confirm for the teleost rainbow trout a role of nuclear receptors (rev-erbβ), cortisol, and sirt1. However, further research is needed to evaluate the independent effect of each one, or the existence of any interaction among them

    Solubility of Methane in Water: Some Useful Results for Hydrate Nucleation

    Get PDF
    In this paper, the solubility of methane in water along the 400 bar isobar is determined by computer simulations using the TIP4P/Ice force field for water and a simple LJ model for methane. In particular, the solubility of methane in water when in contact with the gas phase and the solubility of methane in water when in contact with the hydrate has been determined. The solubility of methane in a gas–liquid system decreases as temperature increases. The solubility of methane in a hydrate–liquid system increases with temperature. The two curves intersect at a certain temperature that determines the triple point T3 at a certain pressure. We also determined T3 by the three-phase direct coexistence method. The results of both methods agree, and we suggest 295(2) K as the value of T3 for this system. We also analyzed the impact of curvature on the solubility of methane in water. We found that the presence of curvature increases the solubility in both the gas–liquid and hydrate–liquid systems. The change in chemical potential for the formation of hydrate is evaluated along the isobar using two different thermodynamic routes, obtaining good agreement between them. It is shown that the driving force for hydrate nucleation under experimental conditions is higher than that for the formation of pure ice when compared at the same supercooling. We also show that supersaturation (i.e., concentrations above those of the planar interface) increases the driving force for nucleation dramatically. The effect of bubbles can be equivalent to that of an additional supercooling of about 20 K. Having highly supersaturated homogeneous solutions makes possible the spontaneous formation of the hydrate at temperatures as high as 285 K (i.e., 10K below T3). The crucial role of the concentration of methane for hydrate formation is clearly revealed. Nucleation of the hydrate can be either impossible or easy and fast depending on the concentration of methane which seems to play the leading role in the understanding of the kinetics of hydrate formation
    corecore