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Phylogenetic prospecting 
for cryptic species of the genus 
Merluccius (Actinopterygii: 
Merlucciidae)
Montse Pérez1, María Fernández‑Míguez1,2, Jesús Matallanas3, Domingo Lloris4 & 
Pablo Presa2*

Hakes of the genus Merluccius include 11 valid species as well a number of rare morphotypes suspected 
to be “cryptic species”. Concatenated nucDNA ITS1-rDNA and mtDNA cyt b sequences plus nested 
ITS1Nes sequences allowed to ascribe 14 specimens of nine rare morphotypes from the South Pacific 
and the South Atlantic to the phylogenetic backbone of this genus. Bayesian analyses pointed to M. 
bilinearis and M. albidus as the oldest species of the genus and the New World cluster, respectively. 
The phylogenetic status of M. angustimanus from the upper Gulf of California suggests its hybrid origin 
between M. gayi and M. productus from about 0.25 MYA, although an ever since confinement of a 
subset of those species cannot be ruled out. The molecular phylodiagnostic test suggests a common 
origin of all rare morphotypes and the absence of cryptic hake species in the Southern Cone. The 
molecular background of the morphotypes distributed between the Western Pacific South of New 
Zealand and the western Atlantic South of Argentina is compatible with their hybrid origin between M. 
gayi and both, M. australis or M. hubbsi, respectively.

The genus Merluccius comprises 11 valid species that occur on most temperate and tropical continental shelves 
except the Asian shores of the Pacific Ocean1. Hakes show an anti-tropical distribution in the Atlantic Ocean 
and the Eastern Pacific and a latitudinal bathymetric overlap between isotherms 7 °C and 23 °C2–4. Based on 
osteological data5,6 it is believed that genus Palaeogadus as ancestor of genus Merluccius, arose near Greenland 
in the early Eocene (ca. 50 MYA)7, dispersed southwards along the North American and Eurasian shelves and 
entered the Pacific8. The earliest known merluccid fossils date back to the Middle Oligocene (ca. 27–33 MYA) in 
a large inland sea that covered much of central Europe and connected to a temperate Arctic Ocean9. It is believed 
that either an ancestral species of Merluccius or the extant M. bilinearis experienced an evolutionary radiation 
in two superclusters, i.e. Old World hakes (the Euro-African supercluster) and New World hakes (the American 
supercluster)5–8. Also, it is hypothesized that a widening rift between Europe and North America plates prompted 
vicariant speciation and that recurrent dispersal events and adaptation to temperature regimes also played a role 
in the speciation of this genus10. Subsequent geological events such as the closure of the Panama Seaway over 3.5 
MYA acted as a geographical barrier between Atlantic and Pacific lineages8,11. Successive population fragmen-
tation and expansion due to climatic oscillations during Pleistocene glaciations allowing founder phenomena 
cannot be ruled out12. Such origin and dispersal hypotheses are congruent with the actual phylogeny of the genus 
worked out after parasite data8 morphology3,5,6,13 and genetic data14–16.

The Old World supercluster comprises five well-defined species and with occasional hybrids between sympat-
ric species, e.g. M. capensis x M. paradoxus17. The New World supercluster comprises three clusters of two species 
each, an Atlantic north cluster that comprises M. bilinearis and M. albidus, a southern cluster that comprises 
M. hubbsi and M. australis, and a Pacific cluster that groups M. gayi and M. productus. Molecular systematics of 
Merluccius generally distinguishes those 11 species18, however there are still knowledge gaps in hake taxonomy 
as some specimens found in regions of species overlap show significant morphological divergence from extant 
species13. For instance, the phylogenetic relationships within the New World supercluster have been repeatedly 
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interrogated due to the uncertain taxonomic status of some pairs of morphotypes such as M. gayi gayi19 vs. M. 
gayi peruanus20, M. angustimanus21 vs. M. hernandezi22, M. hubbsi vs. M. patagonicus23 or M. australis vs. M. 
polylepis or M. tasmanicus24. Several of those morphotypes have been recently taken as synonymous with extant 
species. For instance, the three stocks of M. productus believed to exist in the northeast Pacific corridor from 
Washington State to Costa Rica25,26 likely belong to a single hake species27,28. The high variability and overlap of 
meristic traits between M. hernandezi and M. angustimanus suggests they are synonymous forms13 and that M. 
angustimanus is a subpopulation of M. productus confined to the northern Gulf of California27. Also, meristic (see 
Fig. 1 from23) and molecular analyses29,30 showed that M. patagonicus could be synonymous with M. hubbsi and 
that M. tasmanicus could be synonymous with M. australis31. Taxonomic uncertainties are expected in closely-
related species that show extensive overlap in morphological and meristic traits. Resolution of those questions 
has been complicated by the small number of morphotype samples available, the lack of a systematic sampling 
plan over a reasonable number of localities and the choice of the most appropriate phylogenetic reconstruction 
algorithm.

We address those issues with the most comprehensive sample collection yet made in this genus, which com-
prises all 11 valid species13 as well as M. angustimanus from the Gulf of California21 and 14 specimens of nine 
rare morphotypes classified as M. tasmanicus from New Zealand waters23, M. polylepis from the Pacific coast of 
Chile32, M. patagonicus from the Atlantic South23, uncatalogued specimens of M. hubbsi from the Beagle Chan-
nel and Puerto Madryn in Argentina23, and rare specimens of M. australis from Chile23 and New Zealand24. An 
integrative multimarker phylogenetic reconstruction of genus Merluccius is enforced to determine both, the 
phylogenetic congruence and synergy between mtDNA (cyt b) and nucDNA (ITS1) sequences for inference of 
phylogenetic relationships in this genus and the genetic prospecting for cryptic species within the New World 
supercluster, as suspected on the rare morphotypes described so far.

Results
Description of samples and sequences.  We examined 1205 specimens from 11 valid hake species and 
M. angustimanus (Table  1) as well as nine morphotypes (Table  2). The aligned ITS1 region had a length of 
692 bp and comprised the ITS1-rDNA sequence, 53 bp from the 3′-end of the 18S-rDNA gene and 20 bp from 
the 5′-end of the 5.8S-rDNA gene33. A total of 254 variable sites were found among 85 specimens from 12 hake 
species (including M. angustimanus as putative species) (Supp. Table S1). The ITS1 sequences showed similar 
%GC content between species and a general low transversion rate (Supp. Table S2). The full dataset of 85 ITS1 
sequences comprised 19 variants (Supp. Table S3). The aligned cyt b region had a length of 465 bp and comprised 
428 bp from the 5′-end of the cyt b and 37 bp from the 3′-end of the mitochondrial DNA gene tRNA-Glu. A 
total of 129 variable sites were found among 66 specimens from 12 hake species as including M. angustimanus 
(Supp. Table S1). The 66 cyt b sequences comprised 29 haplotypes as one to four per species (Supp. Table S4). M. 
angustimanus showed a single haplotype (HakeCytb.18) that was molecularly close to those of M. productus, M. 
gayi and M. albidus. Concatenated sequence information from both DNA regions was available on 42 specimens, 
comprised 1158 bp in length with 381 variable sites (Supp. Table S1) and identified 25 variants (Supp. Figure S4). 
The aligned ITS1Nes sequences from 39 specimens of reference and 46 clones from 14 specimens of nine mor-
photypes had a length of 66 bp and 13 variable sites (Supp. Table S1). Those 85 ITS1Nes sequences comprised 
11 variants (HakeITS1Nes.1–11) (Table 3). HakeITS1Nes.2 was shared among the Pacific species and four mor-
photypes, HakeITS1Nes.5 was shared between the Atlantic North species, HakeITS1Nes.6 was shared among all 
morphotypes and HakeITS1Nes.9 was shared between two morphotypes (Table 3). All the morphotypes shared 
at least one ITS1Nes variant among each other or with known species, but also exhibited specific variants, e.g. 
HakeITS1Nes.7-8-10-11. The recombination parameter (R) detected three pairs of sites in the ITS1Nes region 
with at least one recombination event34, i.e. between sites 5–8, 8–14 and 14–56.  

Nucleotide divergence and genetic distance.  The lowest average number of nucleotide substitu-
tions per site among ITS1 sequences (Dxy = 0.004–0.009) as well as among cyt b sequences (Dxy = 0.007–0.014) 
were observed in pairwise comparisons of M. angustimanus, M. productus and M. gayi (Supp. Table S5; Supp. 
Table  S6). M. gayi showed a similar evolutionary divergence of ITS1 (d = 0.004) and cyt b (d = 0.008–0.010) 
from both, M. angustimanus and M. productus, respectively. Those latter species showed the lowest pairwise 
divergence in the dataset, i.e. for ITS1 (d = 0.001) (Supp. Table S5) as well as for cyt b (d = 0.005) (Supp. Table S6). 
The divergence pattern after ITS1Nes sequences was less than that observed on full sequences of ITS1 or cyt 
b because of the lower number of variable sites in the former, and M. angustimanus-M. productus-M. gayi did 
not diverge among each other (Supp. Table S7). The average number of nucleotide substitutions per site (Dxy) 
(Table 4a, Supp. Table S8a) and the net evolutionary divergence between species (Table 4b, Supp. Table S8b) from 
ITS1Nes showed that the morphotype-specific sequences of M. patagonicus (PATA), M. tasmanicus (TASM), M. 
polylepis (POLY), M. hubbsi (TASM) and M. australis (AUST) were more similar to Pacific hakes than to any 
other species in the New World supercluster (see also ITS1Nes variation in Table 3).

Clustering methods.  The major groups of species as inferred from the Euclidean divergence of the PCoA 
correctly identified a) the two major complexes of hakes, Old World versus New World hakes (Supp. Figure S1a, 
b) Atlantic versus Pacific New World hakes (Supp. Figure S1b, and c) the closeness of hake morphotypes to both, 
the Pacific group and the Austral group (Supp. Figure S1c). The AMOVA agreed with the partition among the 
groups identified by PCoA using ITS1 variants, i.e. Old World/ New World and Atlantic New World /Pacific New 
World /Austral New World (Table 5). Noteworthy, the joint analysis including the morphotypes in the Pacific 
cluster produced the largest within cluster variation as compared to any other hierarchical level.
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Figure 1.   BEAST v1.8.485 phylogenetic reconstruction of genus Merluccius spp. using Bayesian inference on 
both, (a) the substitution model HKY85 + I + G on ITS1 variants and (b) the substitution model GTR + G on 
cyt b haplotypes. Percentage of trees over 5000 bootstrap replicates are shown above branches. OTU Gmor 
corresponds to the outgroup Gadus morhua. Scale bar indicates the No. of nucleotide substitutions per 100 DNA 
residues. Sample codes are given in Table 1 and are followed either by the number of ITS1 variants per species 
(Fig. 1a and Supp. Table S3) or by the number of cyt b haplotypes per species (Fig. 1b and Supp. Table S4).
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Phylogenetic reconstruction.  Evaluation of the relationship between the best phylogenetic signal and 
the most plausible phylogenetic scenario upon previous knowledge on this genus showed that Bootstrap support 
from Bayesian inference was maximum on concatenated ITS1—cyt b sequences (Table 6). The most congruent 
topology from likelihood-based trees was issued from concatenated ITS1—cyt b sequences (Fig. 2a; Table 6).

ITS1‑based phylogeny.  The phylogenetic reconstruction of ML (-lnL = 1285.511) performed with PAUP on 
ITS1 variants recovered a correct supercluster split, a large polytomy within superclusters and an unclear age 
status of extant species (Supp. Figure S2a). The Bayesian reconstruction from MRBAYES on ITS1 variants recov-
ered a single polytomy comprising all the well-recognized species clusters (Supp. Figure  S2b). The Bayesian 
reconstruction of BEAST on ITS1 variants supported a correct supercluster split, the absence of polytomies and 
the odd basal placement of M. hubbsi in the New World supercluster (Fig. 1a).

Table 1.   Origin of hakes used in reconstructing the phylogenetic backbone of genus Merluccius spp. N is the 
number of specimens sampled per location. *The so-called M. hernandezi (California hake) in33.

Hake species Code Common names Latitude Location Coordinates N

Merluccius merluccius merl European hake 21–62ºN
Spain
Italy
United Kingdom

37º35′N/08º50′W
38º03′N/12º56′E
55º30′N/04º36′E

186
36
55

Merluccius senegalensis sene Senegalese hake 10–33ºN
Senegal
Namibia
Mauritania

15º01′N/18º00′W
18º10′N/16º20′W
21º40′N/17º55′W

7
25
50

Merluccius polli poll Benguela hake 20º N–19ºS
Senegal
Mauritania
Spain-Morocco

15º01′N/18º00′W
19º37′N/7º06′W
27º15′N/14º10′W

2
20
100

Merluccius capensis cape Shallow-water Cape hake 00–34ºS Namibia
South Africa

24º10′S/14º23′E
25º33′S/15º13′E

63
20

Merluccius paradoxus para Deep-water Cape hake 22–34ºS South Africa
South Africa

25º33′S/15º13′E
34º10′S/17º10′E

68
83

Merluccius productus prod Pacific hake 25–51ºN
Canada
Canada
Canada

48º08′N/122º20′W
49º10′N/123º10′W
50º00′N/125º06′W

30
45
10

Merluccius gayi gayi Peruvian hake
Chilean hake 03–47ºS

Peru–Chile
Chile
Chile

08º50′S/80º00′W
24º40′S/70º50′W
30º00′S/71º55′W

8
21
89

Merluccius australis aust Antarctic queen hake
New Zealand hake 40–57ºS Chile

Australia
41º20′S/74º35′W
43º40′S/169º25′E

60
23

Merluccius hubbsi hubb Argentine hake 25–54ºS Argentina
Argentina

46º30′S/60º45′W
48º30′S/61º30′W

37
70

Merluccius albidus albi Offshore hake 20–35ºN United States
United States

35º21′N/70º50′W
37º21′N/73º33′W

4
5

Merluccius bilinearis bili Silver hake 36–47ºN
United States
United States
United States

39º00′N/73º10′W
40º40′N/72º00′W
42º30′N/68º33′W

6
6
60

Merluccius angustimanus* angu Panama hake 05–23ºN Mexico 29º50′N/113º20′W 6

Outgroup taxon

Gadus morhua Gmor Atlantic cod 36–37ºN United States 37º21′N/73º33′W 10

Table 2.   Origin of rare hake morphotypes from directed sampling campaigns and museum holotypes and 
paratypes used in the molecular phylodiagnosis. N is the number of specimens analyzed per morphotype (see 
also Supp. Table S9).

Morphotypes Code References Location Coordinates N

M. tasmanicus TASM Holotype NMNZ P.556624 Tasman Bay, New Zealand 40º52′S/173º08′E 1

M. tasmanicus TASM Paratype NMNZ P.396324 Cook Strait, New Zealand 41º30′S174º30′E 1

M. patagonicus PATA​ Paratypes IIPB 501–504/200123 Comodoro Ribadavia, Argentina 45º30′S/65º30′W 3

M. polylepis POLY Holotype32 Chiloé, Chile 41º20′S/74º35′W 1

M. polylepis POLY Paratype USNM 15776523 Puerto Montt, Chile 41º57′S/72º87′W 1

M. hubbsi HUBB Paratype IIPD 92/198723 Beagle Channel, Argentina 54°48.9′S/68°14.8′W 1

M. hubbsi HUBB Uncatalogued juveniles23 (cf. A. E. Ruiz 
and R. R. Fontdacaro) Puerto Madryn, Argentina 43°50′S/65°02′W 2

M. australis AUST Paratypes MOVI 27492–27493, for-
merly NMNZ P.1312224 Chalkey Intel, Fiordland, New Zealand 46º03′S/166º20′E 2

M. australis AUST Two uncatalogued juveniles23 (cf. R. 
Bravo) Aysén, Chile 46º22′S/ 75º27′W 2
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Cyt b‑based phylogeny.  Likelihood computation of dN and dS using HyPhy package35 on cyt b sequences 
showed that six out of 142 codons contained nonsynonymous substitutions. Provided that p-values were not 
significant, the null hypothesis of neutral evolution was accepted. The best –lnL value and bootstrap support 
were observed on cyt b haplotypes but its topological features were unsatisfactory due to multiple polytomies 
(Supp. Fig S3a; Table  6). The ML phylogenetic reconstruction on cyt b haplotypes (-lnL = 1137.282) worked 
out with PAUP showed a poor definition of the Old World supercluster with a high impact of polytomy (Supp. 
Figure S3a). The best topology among Bayesian-based supported trees was obtained upon inference on cyt b 
haplotypes (Fig. 1b). The Bayesian phylogenetic reconstruction from MRBAYES on cyt b haplotypes recovered a 
strong supercluster split and a polytomy within the New World supercluster to which M. bilinearis was ancestor 
(Supp. Figure S3b). The Bayesian phylogenetic reconstruction of BEAST on cyt b haplotypes recovered a well-
supported both, supercluster split and cladogenesis within superclusters, where M. bilinearis was basal to New 
World hakes (Fig. 1b).

Table 3.   Absolute frequency of ITS1Nes variants per species and morphotypes and their polymorphic sites 
generated with DnaSP v5.10.177. Alpha-numeric codes for ITS1Nes variants are shown ordinal as distinct from 
full ITS1 variants. Specimen codes are given in Tables 1 and 2.

Variants

Hake species Hake morphotypes Polymorphic sites

merl prod gayi angu aust hubb bili albi AUST TASM POLY PATA​ HUBB
112355
358242656

5566
8926

HakeITS1Nes.1 1 – – – – – – – – – – – – TTT​TTG​ACT​ ACGT​

HakeITS1Nes.2 – 10 3 3 – – – – 1 2 2 – 2 .C.CC..AC .GA

HakeITS1Nes.3 – – – – 8 – – – – – – – – .CC.C..AC .GA

HakeITS1Nes.4 – – – – – 5 – – – – – – 5 .CC.C.GAC​ .GAC​

HakeITS1Nes.5 – – – – – – 6 3 – – – – – .CCC…A .GA

HakeITS1Nes.6 – – – – – – – – 6 5 4 1 12 .C.CC.GAC​ .GA

HakeITS1Nes.7 – – – – – – – – – – – – 1 CC.CC.GAC​ .GA

HakeITS1Nes.8 – – – – – – – – – – – 1 – .CCCC.GAC​ .GA

HakeITS1Nes.9 – – – – – – – – 1 – 1 – – .CCCC..AC .GA

HakeITS1Nes.10 – – – – – – – – – – – 1 – .C.GC.GAC​ GGA​

HakeITS1Nes.11 – – – – – – – – – – 1 –- – .C.CCC​GAC​ .GA

Table 4.   (a) Average number of nucleotide substitutions per site (Dxy) between New World hakes (three 
clusters) and hake morphotypes under test (in capitals) as generated with DnaSP v5.10.177, (b) Estimates of 
the Net Evolutionary Divergence (d) between New World hakes and hake morphotypes as generated with 
MEGA v7.0.2076. Both estimates were computed on ITS1Nes sequences and used the European hake (merl) 
as a relative measure of divergence. 1 Dxy average (a) or d (b) on pairwise comparisons between Pacific hakes 
(M. productus, M. gayi and M. angustimanus) and hake morphotypes (in capitals). 2 Dxy average (a) or d (b) on 
pairwise comparisons between Austral hakes (M. australis and M. hubbsi) and hake morphotypes (in capitals). 
3 Dxy average (a) or d (b) on pairwise comparisons between Atlantic North hakes (M. bilinearis and M. albidus) 
and hake morphotypes (in capitals).

Pacific cluster Austral cluster Atlantic North cluster

prod gayi angu
−

x±S.D. (CI)1 aust hubb
−

x±S.D. (CI)2 bili albi
−

x ± S.D.(CI)3

a

AUST 0.016 0.016 0.016

0.027 ± 0.006 [0.023, 
0.030]

0.008 0.047

0.044 ± 0.016 [0.035, 
0.055]

0.080 0.076

0.073 ± 0.009 [0.067, 
0.078]

TASM 0.031 0.031 0.032 0.055 0.065 0.067 0.060

POLY 0.033 0.033 0.034 0.053 0.064 0.070 0.063

PATA​ 0.031 0.031 0.032 0.047 0.046 0.089 0.085

HUBB 0.028 0.028 0.028 0.054 0.061 0.075 0.068

merl 0.111 0.111 0.115 0.113 0.143 0.117 0.115

b

AUST 0.009 0.009 0.009

0.009 ± 0.003 [0.007, 
0.010]

0.034 0.037

0.034 ± 0.006 [0.031, 
0.038]

0.070 0.071

0.053 ± 0.016 [0.043, 
0.063]

TASM 0.007 0.007 0.008 0.041 0.042 0.040 0.037

POLY 0.007 0.007 0.008 0.026 0.038 0.041 0.038

PATA​ 0.014 0.014 0.015 0.029 0.028 0.076 0.076

HUBB 0.008 0.008 0.009 0.032 0.040 0.053 0.050

merl 0.128 0.128 0.134 0.131 0.182 0.135 0.144



6

Vol:.(1234567890)

Scientific Reports |         (2021) 11:5929  | https://doi.org/10.1038/s41598-021-85008-9

www.nature.com/scientificreports/

Table 5.   Analysis of Molecular Variance (AMOVA) after Arlequin v3.5.2.279 on the hierarchical levels showing 
the highest partition values among groups of species: NW (New World)/OW (Old World) hakes using ITS1 
variants; NW hakes (Atlantic/Pacific/Austral) using ITS1 variants; NW hakes and hake morphotypes using 
ITS1Nes variants. F-statistics were used to estimate the proportion of genetic variation found among species 
(FST), among species within groups (FSC) and among groups (FCT); *p < 0.001.

Hierarchical groups Source of variation d.f Sum of squares Variance components
Percentage of 
variation Statistics

NW/OW (ITS1)

OW group
M. merluccius
M. senegalensis
M. capensis
M. polli
M. paradoxus
NW group
M. albidus
M. bilinearis
M. gayi
M. angustimanus
M. productus
M. australis
M. hubbsi

Among groups 1 428.677 9.007 Va 63.22 FCT = 0.632*

Among species within 
groups 10 326.273 5.091 Vb 35.73 FSC = 0.357*

Within species 72 10.728 0.149 Vc 1.05 FST = 0.989*

Total 83 765.679 14.246

NW Atlantic/Pacific/Austral (ITS1)

Atlantic group
M. albidus
M. bilinearis
Pacific group
M. gayi
M. angustimanus
M. productus
Austral group
M. hubbsi
M. australis

Among groups 2 113.268 3.989 Va 69.95 FCT = 0.700*

Among species within 
groups 4 37.668 1.541 Vb 27.02 FSC = 0.270*

Within species 38 6.553 0.172 Vc 3.02 FST = 0.970*

Total 44 157.489 5.703

NW hakes and morphotypes (ITS1Nes)

Atlantic group
M. albidus
M. bilinearis
Pacific group
M. gayi
M. angustimanus
M. productus
M. patagonicus
M. tasmanicus
M. polylepis
Austral group
M. hubbsi
M. australis

Among groups 2 65.727 1.039 Va 58.47 FCT = 0.892*

Among species within 
groups 8 37.409 0.659 Vb 37.07 FSC = 0.955*

Within species 85 6.750 0.079 Vc 4.46 FST = 0.584*

Total 95 109.885 1.778

Table 6.   Assessment of evolutionary models, marker types and phylogenetic hypotheses. NW New World 
hakes; OW Old World hakes. The bootstrapping values are averaged figures within trees.

DNA data

Bayesian Inference Maximum likelihood

Common featuresBootstrap (%) Tree topology -lnL Bootstrap (%) Tree topology

ITS1 spacer
(variants) 85.07

Strong superclade split
Absence of polytomy
M. hubbsi is ancestor to the 
NW superclade (BEAST, 
Fig. 1a)

 − 1285.51 70.17
Correct superclade split
Internal polytomy
Unclear ancestral species 
(PAUP, Supp. Figure S2a)

M. angustimanus and M. 
productus share the same 
haplotype

Cytochrome b gene (Cyt b) 
(haplotypes) 85.34

Strong superclade split
Absence of polytomy
M. bilinearis is ancestor to 
the NW superclade (BEAST, 
Fig. 1b)

 − 1137.28 77.00

Poor definition of the OW 
superclade
High impact of polytomy
Unclear ancestral species 
(PAUP, Supp. Figure S3a)

Good phylogenetic signal: 
species-specific haplotypes 
(including M. angustimanus) 
and high bootstrap support 
values

ITS1-Cyt b
(concatenated) 86.68

Strong superclade split
Medium impact of polytomy
M. bilinearis is polytomic with 
both superclades (MRBAYES, 
Fig. 2b)

 − 4244.84 68.00
Strong superclade split
Absence of polytomy
M. bilinearis is ancestor to both 
super clades (IQ-TREE, Fig. 2a)

Good phylogenetic signal: 
species-specific haplotypes, 
high bootstrap values and low 
impact of polytomy
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Figure 2.   Phylogeny of genus Merluccius spp. comprising 11 valid species and M. angustimanus as built with 
concatenated sequences from ITS1-rDNA (HKY85 + I + G substitution model) and cyt b (GTR + G substitution 
model), (a) Maximum likelihood tree (-lnL = -4244.841) from IQ-TREE87; supporting values are written on 
branches (SH-aLRT (%)/ultrafast bootstrap (%)). (b) Bayesian tree from MRBAYES v3.2.686; branches are 
annotated with bootstrap values, resp. percent posterior probabilities. OTU Gmor corresponds to the outgroup 
Gadus morhua. Sample codes are given in Table 1 and are followed by the alphanumeric entry code for each 
specimen in the authors laboratory, e.g. aust_ma01_2 is the specimen No. 2 of sample ma01 from M. australis 
(aust). The maps have been modified after13.
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Concatenated ITS1—cyt b phylogeny.  The phylogenetic reconstruction using concatenated sequences of both 
genes showed bootstrap values > 90% for species and clusters. ML (Fig. 2a) and Bayesian (Fig. 2b) methods recov-
ered two superclusters (New World vs. Old World), each of which contained two clusters (Pacific North + Pacific 
South, and North Euro-Africa + South Africa, respectively), the ancient status of M. bilinearis to both super-
clusters and that of M. albidus to the New World one. Consistently across reconstructions, M. angustimanus 
branched between M. productus and M. gayi. The Bayesian reconstruction placed M. angustimanus at the base 
of the sister taxons of M. productus and M. gayi (Supp. Figure S4). The phylogenies inferred from the methods 
ML and Bayesian were topologically similar to each other (Fig. 3). The Bayesian reconstruction failed to resolve 
the phylogenetic status of M. bilinearis regarding the two superclusters and exhibited a large polytomy within 
the New World supercluster.

Coalescence.  The relative coalescence times inferred from a typical 2% mutation rate of cyt b in fish was ~ 9 
MYA between Merluccius and the codfish genus Gadus, ~ 3.5 MYA between the New World and the Old World 
superclusters, and ~ 2.3 MYA between M. bilinearis and other New World hakes (Fig. 4). Atlantic and Pacific 
New World hakes would have diverged some ~ 1.4 MYA.

ITS1Nes‑based phylodiagnosis.  The Neighbor-Joining reconstruction performed with the ITS1Nes fragment 
included six valid species and M. angustimanus, and comformed the basal phylogenetic backbone of this genus 
in the New World against which new phylogenetic hypotheses can be tested. The basal support afforded from 
the ITS1Nes fragment was quite close to that obtained on the full ITS1 sequence (Fig. 1a) but including a poly-
tomy for M. gayi–M. productus (Fig. 5). Re-runs of morphotypes against the basal tree assigned five morphotype 
clones of M. hubbsi to the valid M. hubbsi cluster. The remaining 41 morphotype clones (M. polylepis, M. tas-
manicus, M. patagonicus, M. australis, M. hubbsi) were grouped in a large intermediate and weakly supported 
cluster placed between the Pacific cluster (M. gayi–M. productus–M. angustimanus) and the Austral cluster 
(M. australis–M. hubbsi) (Fig. 6). Two additional minor clusters of morphotypes closely branched either to the 
Pacific cluster or to the Austral cluster.

Discussion
Genetic homogeneity is the null hypothesis in widely-distributed marine taxa with large population size and 
sometimes morphological divergence may be a first clue to hypothesize on the existence of genetically divergent 
units13. Demonstration of intraspecific genetic differentiation requires comprehensive spatio-temporal sam-
ple designs, the identification of suitable genetic markers at the resolution level concerned, and the choice of 
appropriate phylogenetic algorithms18. The nuclear ITS1-rDNA region has been successfully applied in the 
identification of closely related taxa36, in fish phylogeography37, in phylogenetic inference38 as well as in forensic 
authentication of species33. Also, the cyt b gene is a well-known mtDNA gene in structure and function39 and is 
useful in phylogenetic reconstruction at many taxonomic levels, including congeneric species and confamiliar 
genera40 but see exceptions41. The synergy afforded from concatenated analyses of the nuclear ITS1-rDNA and 
the mitochondrial DNA cyt b allows comparison of interspecific levels of divergence and to achieving phylo-
genetic scenarios unaffordable from single-markers approaches42. The higher interspecific variation observed 
between New World and Old World superclusters (e.g. ITS1, Dxy ≈ 0.090) than within superclusters (e.g. ITS1, 

Figure 3.   Comparison of reconstruction methods from a synthetic phylogeny of genus Merluccius spp. on 
concatenated sequences from ITS1-rDNA (HKY85 + I + G substitution model) and cyt b (GTR + G substitution 
model). Left: Phylogeny of genus Merluccius spp. using Maximum likelihood (-lnL =  − 4244.841) after 
IQ-TREE87. Right: Bayesian tree after MRBAYES v3.2.686. Circled nodes indicate topology differences between 
both reconstruction methods. Gadus morhua was used as outgroup.
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Dxy ≈ 0.040) is expected if previous calibrations were robust33. In consequence a higher net evolutionary diver-
gence (d) existed among Old World species (d ≈ 0.080) than among New World species (d ≈ 0.030). In contrast, 
the minimum interspecific divergences (d and Dxy) observed among Pacific New World hakes (M. gayi–M. 
productus–M. angustimanus) represented the most recent evolutionary scenario in this genus, as reported from 
morphometric data5, allozyme data43 and mtDNA plus microsatellite data27.

The PCoA performed on ITS1 sequences agreed with AMOVA partitions that separated New World hakes 
into Atlantic, Austral, and Pacific groups. Those exploratory analyses also allocated morphotypes to either the 
Pacific or the Austral groups. The phylogenetic support for those groups tested between methods (Bayesian 
inference vs. ML) and markers (ITS1, cyt b) with non-parametric bootstrapping produced the best-supported 
Bayesian-based reconstruction on cyt b haplotypes. Such reconstruction was characterized by a well-defined 
supercluster split and the placement of M. bilinearis at the base of the New World supercluster (BEAST, Fig. 1b). 
However, the best Bayesian tree and the best ML tree were not fully congruent with previous studies, a handicap 
if congruence among marker reconstructions is a relevant asset, e.g. the better ML-value on cyt b does not grant 
any better species tree than that from ML-ITS1 because the topology of the latter is more congruent with previ-
ous studies. Such scenario highlights the insufficiency of the ML method on cyt b variation as compared to the 
Bayesian approach (but see44). The Bayesian phylogeny performed on both genes with BEAST was the unique 
method recovering both, a well-supported supercluster split and a full intracluster resolution, including the full 
definition of the Austral cluster. Discrepancies between markers using BEAST consisted on both, the branching 
of M. hubbsi as the oldest taxon among New World hakes with ITS1 and the branching of M. albidus within the 
Austral cluster with cyt b. Nonetheless, caution is needed on rejecting those odd positions regarding previous 
studies, since they could result from differential evolutionary rates among the markers applied.

It is expected that deep phylogenetic rooting of ancient hake lineages could be better afforded from conserva-
tive mtDNA haplotypes45. However, more recent evolutionary processes such as hybridization and drift could be 
better unveiled by highly recombinant nuclear DNA markers. Therefore, speciation histories based on mtDNA 
alone can be extensively misleading and large phylogenetic discrepancies have been reported between nuclear 
DNA and mitochondrial DNA46. Successful reconstructions have been achieved on concatenated sequences 
of the ITS region and COI47 or on nuclear genes48. Also, current data showed that concatenated data from 
ITS1-rDNA and cyt b at reconstructing hakes phylogeny using Bayesian inference have dramatically improved 

Figure 4.   Bayesian reconstruction of genus Merluccius spp. on sequence variation of cyt b majority haplotypes 
(GTR + G substitution model) using BEAST v1.8.485. Divergence time is given in MYA on nodes as calculated 
upon a 2% mutation rate averaged among 26 pairs of major intraspecific phylogroups of fishes40. Gmor 
corresponds to the outgroup Gadus morhua. Scale bar indicates the No. of nucleotide substitutions per 100 DNA 
residues. Sample codes are given in Table 1.
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topology and support regarding individual markers49. Letting alone the well-supported supercluster split and the 
absence of polytomy, three topological novelties consisted on the placement of M. bilinearis as the oldest species 
of the genus, the basal branching of M. albidus to all New World hakes, and the intermediate branching of M. 
angustimanus between M. gayi and M. productus (see IQ-TREE, Fig. 2a). Those unexpected scenarios in view of 
previous studies can be explained as a synergical advantage of data concatenation as genes add up to produce a 
more balanced signal of the interspecific evolutionary divergence than that afforded from single genes47. Since 
each gene responds to distinct evolutionary dynamics it is expected that concatenated gene reconstructions 
approach the average evolutionary signal of their common history50.

The major phylogenetic split in Merluccius comprises two monophyletic superclusters, the Old World one 
comprises five species and the New World one comprises six species, as shown with parasites5,8,51, morphology 
and meristic traits6, allozymes14,52 and nucDNA33. This genus is believed to emerge in the Cretaceous after the 
opening of the southern Atlantic Ocean basin between South America and Africa7. However, its evolutionary 
bifurcation into New World and Old World superclusters is believed to have begun in the Oligocene53 when the 
northern margins of those continents begun to diverge (~ 30 MYA54). Application of an average 2% evolutionary 
clock to the cyt b as calibrated on 23 fishes40,55 suggests that genus Merluccius and genus Gadus diverged some 
9 MYA and the supercluster split would have taken place some 3.4 MYA, what is congruent with estimates from 
the evolutionary rate of four mtDNA genes56 which dated back the supercluster split to some 3.0–4.2 MYA57. 
Such major evolutionary split seems to have been determined by a rapid vicariant-subsequent speciation in both 
continents in the early Pleistocene (ca. 2.58–0.77 MYA) with separation of Old World hakes into two clusters 
around 1.9 MYA, i.e. much later than reported after allozyme data (4.2–3 MYA52). The actual speciation scenario 
was not accomplished until ~ 0.3 MYA with the divergence within the species pairs M. merluccius–M. senega-
lensis and M. productus–M. gayi. Nevertheles, such divergence times as computed on a cyt b—based molecular 
clock should be taken as relative inferences because the evolutionary scenario from concatenated-based trees 

Figure 5.   Basal NJ tree on ITS1Nes sequences after PHYLIPv3.684 built to reconstruct the phylogenetic 
backbone of genus Merluccius spp. from the New World. The European hake (merl) was used as outgroup. Gray 
rectangles delineate a single cluster for each valid species. The percentage of trees over 1000 bootstrap replicates 
are shown above branches. Codes for valid species are given in Table 1 and are followed by the alphanumeric 
entry code for each specimen in the authors laboratory, e.g. aust_ma01_3 is the specimen No. 3 of sample ma01 
from M. australis (aust).
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differs substantially from any other single-marker reconstruction. The Old World supercluster is believed to 
have experienced strong bottlenecks after the early divergence of M. polli and M. paradoxus, followed by a later 
speciation of M. merluccius, M. capensis and M. senegalensis52. A consensus exists on the monophyly of those 
two clusters8,14,15,52. Such phylogenetic partition is biogeographically counterintuitive since sympatric M. cap-
ensis and M. paradoxus in Atlantic South Africa are believed to emerge from two independent dispersions of 
North Atlantic taxa along the west coast of Africa58. Moreover, provided that M. polli and M. paradoxus are two 

Figure 6.   Phylodiagnostic NJ tree (sensu18) on ITS1Nes sequences after PHYLIPv3.684 built to allocate 
morphotype clones (red branches and codes in uppercase) to the phylogenetic backbone of genus Merluccius 
spp. from the New World (clusters in grey rectangles, black branches and codes in lowercase). The percentage of 
trees over 1000 bootstrap replicates are shown above branches. Codes for valid species are given in Table 1 and 
are followed by the alphanumeric entry code for each specimen in the authors laboratory, e.g. aust_ma01_3 is 
the specimen No. 3 of sample ma01 from M. australis (aust). Codes for morphotypes are given in Table 2 and 
are followed by an alphanumeric entry from the authors laboratories (Supp. Table S9), e.g. TASM_M3_1 is a 
ITS1Nes sequence from muscle tissue (1) of specimen M3 (M3) of morphotype M. tasmanicus (TASM).



12

Vol:.(1234567890)

Scientific Reports |         (2021) 11:5929  | https://doi.org/10.1038/s41598-021-85008-9

www.nature.com/scientificreports/

benthonic species closer to the New World supercluster, they have been proposed both, either to descend from 
an early Old World Merluccius cluster52 or to represent a distinct speciation process in the Eastern Atlantic59.

The variance partition, the multivariate approach, and the phylogenetic inference, all them support three 
clusters within the New World supercluster, namely the Atlantic, the Austral and the Pacific. In the Atlantic clus-
ter, the evolutionary status of M. bilinearis is disaggregated in classical hake phylogenies. Generally, this species 
has been placed as ancient to New World species with various methods and markers, including likelihood52 and 
parsimony14 on allozymes; NJ, ML, UPGMA on the D-loop15 and current Bayesian analyses on cyt b haplotypes. 
However, new scenarios appear after concatenated ITS1—cyt b sequences which indefectibly place M. bilinearis 
as the oldest among extant hake species (see Fig. 2).

Most previous studies agree on that hake originated in the North Atlantic and entered the Pacific, but disa-
gree on the origin of M. hubbsi, i.e. as diverted either from an eastern south Pacific stock6,60 or from a western 
north Atlantic stock5,8. A novelty in the current concatenated approach is a well-supported Austral cluster that 
is congruent with parasite studies in which M. hubbsi and M. australis are closely related taxa of Austral origin6. 
The concatenated ML tree also shows the basal status of M. albidus to all New World hakes except M. bilinearis, 
what agrees with previous morphological and meristic studies5. Moreover, its broad western Atlantic distribution 
suggests that M. albidus is the colonizer of de Southern Cone and the primeval species of the Austral cluster. The 
phylogenetic proximity of M. hubbsi and M. australis suggests that M. hubbsi would have speciated after M. albi-
dus some 1.5 MYA and would have reached its present distribution by a dispersal route along the Atlantic coast5. 
Noteworthy, other marker types offer the different scenario of M. hubbsi speciation prior to M. albidus (see also14).

Pacific New World hakes are believed originated upon the early migration of North Atlantic New World 
hakes into the Pacific8. Combined allozyme data and mtDNA14,52 and hake otoliths61,62 support the hypothesis 
of the separation between M. bilinearis and both, M. productus–M. gayi and M. albidus before the closure of 
the Panama Isthmus (3.5 MYA63) and advanced the divergence of M. bilinearis to the Miocene some 12 MYA52. 
However, present data suggest that M. albidus diverged first from M. bilinearis and that the divergence of actual 
north Pacific species from Atlantic species begun with the rise of the Panama Isthmus. A more recent speciation 
in the Pacific seems to have occurred between M. productus and M. gayi some 0.5 MYA. Such temporal estimate 
is congruent with the origin of M. angustimanus as a result of a post-speciation confinement of one of those 
species or their hybrids in the northern Gulf of California, some 0.25 MYA. Those hypothetical timeframes 
should be further investigated in relation to reported population fragmentations and expansions due to climatic 
oscillations that took place during Pleistocene glaciations in that area12.

Several species have been proposed to occur in the Pacific New World cluster such as M. productus, M. 
angustimanus, M. hernandezi, M. gayi gayi, and M. gayi peruanus22,64,65 as well as morphs (dwarf, normal, 
etc.)27,66,67 all with close morphological and meristic similarity among each other5,6 as well as in protein-coding 
loci43. Recently, it has been suggested that M. gayi68 could be the single pan-Pacific species28 although the North-
Eastern Pacific hake has to be named Merluccius productus by priority28. Despite being considered by FAO as a 
variant of M. angustimanus3 and reproductively isolated from M. productus and M. angustimanus14, Merluccius 
hernandezi22 from Sinaloa state would likely be a dwarf morphotype of M. productus28. After its first description as 
a “tropical deep-water species off the Pacific coast of Central America from Mexico to Panama which is sandwiched 
between M. productus to the north and M. gayi to the south”14, M. angustimanus has been a more recognized 
taxon than M. hernandezi69. In the first genetic description of M. angustimanus33 it was named M. hernandezi 
provided its northern California origin. Following recovering of its trawling data from the seventies70 as well as 
the examination of its large scales (Mathews, personal communication) such sample was properly renamed as 
M. angustimanus18. That genetic analysis of M. angustimanus showed that the PCR–RFLP pattern on the ITS1 
spacer was very similar to those of M. productus and M. gayi18,33. Also, current data showed that M. angusti-
manus shared its two unique ITS1 variants with M. productus. That result is congruent with the within species 
concerted evolution of the ITS1-rDNA gene family37 and also with the recently proposed confinement and drift 
of M. productus in the Gulf of California giving rise to its present divergent population27,27. Present data also 
suggest the putative hybrid origin of M. angustimanus by means of a trans-equatorial incursion of M. gayi5,6,14,22 
in the territories of M. productus in the Gulf of California (see the bootstrap weakness within the Pacific cluster 
in all concatenated reconstructions, Fig. 2). Moreover, the six specimens of M. angustimanus examined had no 
evolutionary novelties in their cyt b region but rather were a chimeric genome from extant neighboring species 
plus an A-139 residue shared with M. albidus (see Supp. Table S4). In summary, M. angustimanus seems to be 
a hake population trapped in the northern Gulf of California27 whose origin dates back some 0.25 MYA either 
from hybridization between M. productus and M. gayi or from a confinement of a subset of those species therein. 
Such hypotheses would explain the weak morphological and molecular differentiation of M. angustimanus from 
its neighboring hake species22. Whether that confined population can be self-sustainable as a relic of an ancient 
hybridization or if its viability depends on ongoing genetic contribution from the surrounding M. productus, 
are unexplored questions.

The morphotypes under test other than M. angustimanus were analyzed with the nested fragment ITS1Nes 
which offered a more conservative view of the interspecific diversity than the full ITS1 sequence, i.e. 11 
HakeITS1Nes variants versus 19 HakeITS1 variants. In addition to morphotype-specific variants, all morpho-
types shared the specific HakeITS1Nes.2 sequence from Pacific hakes, what suggests their common origin. Such 
commonality does not preclude the presence of specific sequences within the ITS1 spacer family that trace back 
the origin of their carriers. For instance, although some ITS1Nes variants of a given morphotype fully grouped 
into the M. hubbsi clade (e.g. HUBBM131) other intraindividual variants branched intermediately between the 
Pacific cluster and the Austral cluster. That is a typical scenario for interspecific hybrids which can be ascertained 
by inspection of the dramatic decrease of the basal tree bootstrap support of the Austral and the Pacific clusters 
in the phylogenetic backbone (see Figs. 5 and 6). The significant No. of recombination events detected in those 
sequences also comes to support the working hypothesis of a hybrid origin for those morphotypes. The small 
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molecular differentiation observed among morphotypes does not support either their distinct origin nor the 
existence of cryptic species around the Southern Cone. For instance, the six clones of the M. hubbsi paratype 
from the Beagle Channel (HUBBM91 and HUBBM92) shared ITS1Nes variants with all other morphotypes, 
including M. patagonicus (PATAM101 and PATAM111). After the description of the M. patagonicus23 some 
additional analyses suggested its synonymy with M. hubbsi29,31. However, the three paratypes of M. patagonicus 
did not share any sequence variant with true specimens of M. hubbsi (e.g. hubb153.2) but branched between 
the clusters of Austral hakes and Pacific hakes. Likewise, M. tasmanicus24 and M. polylepis from the Southern 
Ocean32 had been proposed as synonymous of M. australis6,29,30. However, their phylogenetic status was much 
like the rest of morphotypes, e.g. the paratypes of M. australis from Chile and from New Zealand. It is probable 
that those rare morphotypes resemble extant species when analyzed with more conservative markers such as 
the mtDNA Cytochrome c oxidase subunit I (COI)29. However, less conservative regions such as the ITS1-rDNA 
suggest that the morphotypes examined are the result of recurrent hybridization between adjacent M. gayi and 
M. australis or M. hubbsi in the Southern Cone. The wide distribution range of those parent species would make 
probable to find hybrids commonplace from the western Atlantic South in Argentine to the Western Pacific 
South in New Zealand.

Methods
Sample collection.  This study was conducted in accordance with the European directive 2010/63/EU and 
the Spanish legislation on animal welfare (RD53/2013 and RD1386/2018). All the experiments were approved 
by the local ethics committee of Centro Oceanográfico de Vigo. Samples were taken from fishing or formalin-
preserved corps; therefore no restrictions apply on taking tissue samples for species identification. Eleven valid 
hake species were sampled in their natural ranges (Table 1) together with M. angustimanus from the northern 
Gulf of California and nine morphotypes as three from the western Atlantic South, three from the eastern Pacific 
South and three from the south Western Pacific (Table 2, Supp. Table S9). The Atlantic cod (Gadus morhua) 
was used as a phylogenetic outgroup. The world-wide sampling was performed on board of factory ships and 
research vessels between 2000 and 200333 when 9–277 specimens per species were preserved in 95% ethanol or 
frozen upon collection and their GPS recorded on board (Table 1). All specimens were identified using species-
specific morphological traits such as otoliths, shape of abdominal vertebrae (parapophysis), cranial shape and 
pectoral fin length, following classification criteria previously established6. Whole specimens were boiled to 
recover those structures and to facilitate bone cleaning. Six specimens of M. angustimanus were sampled as 
preserved frozen from a bottom trawl campaign (80–523 m in depth) carried out in 1973 by Instituto Nacional 
de la Pesca, Mexico70. Fourteen additional specimens as holotypes, paratypes and rare morphotypes were either 
sampled in situ by the authors or taken from museum specimens as preserved in formalin. Two specimens of M. 
tasmanicus (DM5566 and DM3963) and four specimens of M. patagonicus were sampled and described in23,24, 
respectively. The paratype USNM 157765 of M. polylepis from Puerto Montt (Chile) was described by23 and the 
M. polylepis holotype off Chiloe (Chilean Pacific) was described by32. Three rare morphotypes of M. hubbsi from 
the Beagle Channel (IIPB92/1987) and from Puerto Madryn were described by23. Finally, two rare morphotypes 
of M. australis from New Zealand (MOVI 27492–27493, formerly NMNZ P.13122) were described by24 and two 
additional ones from the Chilean Pacific (off the Aysén Region) were described in23.

Molecular data.  Genomic DNA was extracted with FENOSALT71 including a preliminary 24  h hydra-
tion step for formalin-fixed samples. Two synergic tools for hakes identification were applied, one based on the 
ITS1-rDNA spacer33 and another based on the mtDNA cyt b gene18. Those targets are suitable DNA regions 
for the taxonomic classification of closely related taxa and their combinatory power has proven to be a robust 
approach to reduce the authentication error from hake-based commercial products72. Amplification conditions 
for the ITS1-rDNA spacer followed previous developments in this genus33,73. Electropherograms were revised 
with Chromas software (Technelysium, Tewantin, Australia). A total of 85 specimens were sequenced as averag-
ing ~ 6 specimens per species (Supp. Table S1). Formalin-preserved samples produced 46 ITS1 nested sequences 
(ITS1Nes) of 66 bp in length using the new primer pair, PARIB152 (5′-GTT​TCG​CTG​ACC​CCG​TTG​G-3′) and 
PARIB197 (5′-CCG​CAC​TCT​CCC​TCG​TAC​CTC-3′). The PCR reactions contained 1 µl DNA template, 20 pmol 
of each primer, 200 µM of each dNTP, 1.6 mM MgCl2, 5 µl of 5X Colorless GoTaq Flexi Buffer and 1.5U GoTaq 
Flexi DNA Polymerase (Promega) in a total volume of 25µL. Amplification was performed in an Eppendorf 
Mastercycler Gradient under the following conditions: one cycle at 95ºC for 5 min, 30 cycles of 1 min at 95 °C, 
1 min at 57 °C and 1 min at 72 °C and a final extension at 72 °C for 10 min. Amplicons were cleaned using the 
Wizard SV Gel and PCR Clean-Up System (Promega) according to the manufacturer’s protocol. Clean PCR 
products were cloned into the pGEM-T Easy Vector System II (Promega) following the manufacturer protocol 
using a 3:1 insert:vector ratio. Clones were lysed and their plasmid purified using the NucleoSpin Extract (Mack-
erey -Nagel). Sequencing was performed on both strands in an ABI Prism 3100 Sequencer (Applied Biosystems) 
using T7 and SP6 primers. Several ITS1Nes sequences were obtained from multiple cloning per specimen of 
each morphotype (Supp. Table S1, Supp. Table S9). The 3′-end of the cyt b gene was obtained as described for 
this genus18,74. Sixty-six specimens were sequenced for cyt b as 5.42 ± 2.47 specimens per species in addition to 
the outgroup Gadus morhua.

Sequence alignment.  The 3′ end of the 18S gene and the 5′-end of the 5.8S gene were used to align the 
85 ITS1 sequences obtained from 11 hake species using the program SeqLab from the GCG software package 
(Genetics Computer Group, Madison, Wisconsin)75. The alignment of 66 sequences from the 464–465 bp cyt 
b region was performed from the 3′-end of the mitochondrial tRNA-Glu gene. The molecular properties of 
those sequences per species were calculated using MEGA v7.0.2076. Nucleotide diversity (Pi) was computed 
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using DnaSP v5.10.177. The average number of nucleotide substitutions per site (Dxy) and estimates of the Net 
Evolutionary Divergence between species (d) were compared among taxa using the confidence interval calcu-
lated as CI = −x±1.96*(S.D./

√
n ). The Principal Coordinates Analysis (PCoA) built with GenAlEx v6.50378 on the 

molecular variation of ITS1 variants was used to check for the correct divergence signal between superclusters 
(New World and Old World) as well as between clusters and between species. Genetic variation within and 
between clusters were contrasted with an Analysis of Molecular Variance (AMOVA) as implemented in Arlequin 
v3.5.2.279.

Comparative phylogeny and synthetic phylogeny.  The phylogenetic reconstructions using the ITS1 
region, the ITS1Nes fragment and the cyt b region included reference samples used at establishing the phylo-
genetic backbone of the genus18,33. The phylogenetic test enforced to allocate morphotypes was based on the 
phylogenetic backbone of New World hakes built with the ITS1Nes fragment. The most suitable nucleotide sub-
stitution models were selected using jModeltest v2.1.1080. The HKY85 + I + G model81 was the best fitted to the 
ITS1-rDNA variation and the GTR + G model82 was the best fitted to that of the cyt b gene. Likelihood computa-
tions of nonsynonymous (dN) and synonymous (dS) substitution rates were conducted using HyPhy software 
package35. The phylogenetic reconstruction was carried out using full sequences (ITS1, ITS1Nes and cyt b) as 
well as sequence variants (ITS1 and ITS1Nes) and cyt b haplotypes, as obtained with program DnaSP v5.10.177. 
That software was also used to estimate the Recombination parameter (R)34 as (R = 4Nr) where N is the popula-
tion size and r is the recombination rate per sequence. The rate R allowed to assess whether recombination fin-
gerprints can be detected among ITS1Nes sequences as expected in highly recombinant nuclear DNA markers37.

Character-based phylogenies were first constructed using Maximum Likelihood (ML) hypothesis testing after 
PAUP v4.083, a gamma distribution coefficient (gamma-ITS1 or gamma-ITS1Nes = 0.269; gamma—cyt b = 0.420), 
a transition/transversion rate (Ti/Tv-ITS1 and Ti/Tv-ITS1Nes = 1.761; Ti/Tv—cyt b = 7.143) and the nucleotide 
substitution rate matrix observed for each marker. An algorithmic Neighbor-joining tree was built on ITS1Nes 
using PHYLIP v3.6 upon 5000 bootstrap replicates84. Bayesian phylogenetic hypotheses on ITS1 variants as well 
as on cyt b haplotypes were tested using the programs BEAST v1.8.485 and MRBAYES v3.2.686 and taking into 
account the best fitted evolutionary models. The comparative phylogeny consisted on contrasting tree support 
values and topological consistence per marker type (ITS1 and cyt b) among reconstruction methods (ML and 
Bayesian). The synthetic phylogeny of the genus consisted on a ML reconstruction made upon concatenated 
data sets of both genes using IQ-TREE (http://iqtre​e.cibiv​.univi​e.ac.at/ 87) which allows partitioning the analysis 
to simultaneously conjugate two evolutionary models and also enforces the Shimodaira–Hasegawa test (SH) 
for testing gene trees. The null hypothesis (H0) stated that all the trees tested would be equally performant at 
explaining the observed data, while the alternate hypothesis (H1) stated that only one among several trees was 
a better proxy to real data. The Bayesian models implemented in MRBAYES and BEAST were employed in the 
phylogenetic reconstruction of concatenated sequences. The Net Evolutionary Divergence (d) among sequences 
(ITS1 variants, ITS1Nes variants, cyt b haplotypes) was calculated upon divergence between OTUs (species, 
clusters and superclusters) as (PAB) and corrected for within-OTU variation (PA and PB) as:

The net divergence values among cyt b sequences were converted to proxy estimates of coalescence times 
using a standard mtDNA clock for fishes, i.e. 2% sequence divergence per million years between two lineages55.
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