40 research outputs found

    Magnetically Focused Proton Irradiation of Small Volume Radiosurgery Targets Using a Triplet of Quadrupole Magnets

    Get PDF
    Proton therapy is an advantageous choice for the irradiation of tumors in proximity of critical structures due to rapid dose fall off and high dose deposition at target compared to dose at the surface of the patient (ie, peak-to-entrance dose ratio (P/E)). However, with target fields below 1.0 cm, as often encountered in proton radiosurgery, multiple Coulomb scattering (MCS) broadens proton beams leading to diminished P/E advantages and reduced dose delivery efficiency (DDE). Magnetic focusing tends to counteract MCS and is a promising method to reduce these undesirable effects. The purpose of this research is to investigate the advantages of proton magnetic focusing with a triplet of quadrupole rare earth permanent magnets

    Incorporation of Multiple Coulomb Scattering in the Prediction of Optimal Focal Lengths in Magnetically Focused Proton Radiosurgery

    Get PDF
    Magnetic focusing of protons is a promising approach to improve patient radiation dose distribution in proton radiosurgery. The paths of individual protons are affected by multiple atomic deflections (multiple Coulomb scattering [MCS]) and affect overall beam characteristics in the patient. The purpose of this project is to account for the effects of MCS in the optimization of focal lengths in magnetically focused proton radiosurgery

    Strong signature of natural selection within an FHIT intron implicated in prostate cancer risk

    Get PDF
    Previously, a candidate gene linkage approach on brother pairs affected with prostate cancer identified a locus of prostate cancer susceptibility at D3S1234 within the fragile histidine triad gene (FHIT), a tumor suppressor that induces apoptosis. Subsequent association tests on 16 SNPs spanning approximately 381 kb surrounding D3S1234 in Americans of European descent revealed significant evidence of association for a single SNP within intron 5 of FHIT. In the current study, resequencing and genotyping within a 28.5 kb region surrounding this SNP further delineated the association with prostate cancer risk to a 15 kb region. Multiple SNPs in sequences under evolutionary constraint within intron 5 of FHIT defined several related haplotypes with an increased risk of prostate cancer in European-Americans. Strong associations were detected for a risk haplotype defined by SNPs 138543, 142413, and 152494 in all cases (Pearson's χ2 = 12.34, df 1, P = 0.00045) and for the homozygous risk haplotype defined by SNPs 144716, 142413, and 148444 in cases that shared 2 alleles identical by descent with their affected brothers (Pearson's χ2 = 11.50, df 1, P = 0.00070). In addition to highly conserved sequences encompassing SNPs 148444 and 152413, population studies revealed strong signatures of natural selection for a 1 kb window covering the SNP 144716 in two human populations, the European American (π = 0.0072, Tajima's D= 3.31, 14 SNPs) and the Japanese (π = 0.0049, Fay & Wu's H = 8.05, 14 SNPs), as well as in chimpanzees (Fay & Wu's H = 8.62, 12 SNPs). These results strongly support the involvement of the FHIT intronic region in an increased risk of prostate cancer. © 2008 Ding et al

    Chromosomal-level assembly of the Asian Seabass genome using long sequence reads and multi-layered scaffolding

    Get PDF
    We report here the ~670 Mb genome assembly of the Asian seabass (Lates calcarifer), a tropical marine teleost. We used long-read sequencing augmented by transcriptomics, optical and genetic mapping along with shared synteny from closely related fish species to derive a chromosome-level assembly with a contig N50 size over 1 Mb and scaffold N50 size over 25 Mb that span ~90% of the genome. The population structure of L. calcarifer species complex was analyzed by re-sequencing 61 individuals representing various regions across the species' native range. SNP analyses identified high levels of genetic diversity and confirmed earlier indications of a population stratification comprising three clades with signs of admixture apparent in the South-East Asian population. The quality of the Asian seabass genome assembly far exceeds that of any other fish species, and will serve as a new standard for fish genomics

    Tumor response to radiotherapy is dependent on genotype-associated mechanisms in vitro and in vivo

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>We have previously shown that in vitro radiosensitivity of human tumor cells segregate non-randomly into a limited number of groups. Each group associates with a specific genotype. However we have also shown that abrogation of a single gene (p21) in a human tumor cell unexpectedly sensitized xenograft tumors comprised of these cells to radiotherapy while not affecting in vitro cellular radiosensitivity. Therefore in vitro assays alone cannot predict tumor response to radiotherapy.</p> <p>In the current work, we measure in vitro radiosensitivity and in vivo response of their xenograft tumors in a series of human tumor lines that represent the range of radiosensitivity observed in human tumor cells. We also measure response of their xenograft tumors to different radiotherapy protocols. We reduce these data into a simple analytical structure that defines the relationship between tumor response and total dose based on two coefficients that are specific to tumor cell genotype, fraction size and total dose.</p> <p>Methods</p> <p>We assayed in vitro survival patterns in eight tumor cell lines that vary in cellular radiosensitivity and genotype. We also measured response of their xenograft tumors to four radiotherapy protocols: 8 × 2 Gy; 2 × 5Gy, 1 × 7.5 Gy and 1 × 15 Gy. We analyze these data to derive coefficients that describe both in vitro and in vivo responses.</p> <p>Results</p> <p>Response of xenografts comprised of human tumor cells to different radiotherapy protocols can be reduced to only two coefficients that represent 1) total cells killed as measured in vitro 2) additional response in vivo not predicted by cell killing. These coefficients segregate with specific genotypes including those most frequently observed in human tumors in the clinic. Coefficients that describe in vitro and in vivo mechanisms can predict tumor response to any radiation protocol based on tumor cell genotype, fraction-size and total dose.</p> <p>Conclusions</p> <p>We establish an analytical structure that predicts tumor response to radiotherapy based on coefficients that represent in vitro and in vivo responses. Both coefficients are dependent on tumor cell genotype and fraction-size. We identify a novel previously unreported mechanism that sensitizes tumors in vivo; this sensitization varies with tumor cell genotype and fraction size.</p

    Finishing the euchromatic sequence of the human genome

    Get PDF
    The sequence of the human genome encodes the genetic instructions for human physiology, as well as rich information about human evolution. In 2001, the International Human Genome Sequencing Consortium reported a draft sequence of the euchromatic portion of the human genome. Since then, the international collaboration has worked to convert this draft into a genome sequence with high accuracy and nearly complete coverage. Here, we report the result of this finishing process. The current genome sequence (Build 35) contains 2.85 billion nucleotides interrupted by only 341 gaps. It covers ∼99% of the euchromatic genome and is accurate to an error rate of ∼1 event per 100,000 bases. Many of the remaining euchromatic gaps are associated with segmental duplications and will require focused work with new methods. The near-complete sequence, the first for a vertebrate, greatly improves the precision of biological analyses of the human genome including studies of gene number, birth and death. Notably, the human enome seems to encode only 20,000-25,000 protein-coding genes. The genome sequence reported here should serve as a firm foundation for biomedical research in the decades ahead

    Comorbidity-Adjusted Survival in Early Stage Lung Cancer Patients Treated with Hypofractionated Proton Therapy

    Get PDF
    Objective. To determine the influence of comorbidity on survival in early-stage lung cancer patients treated with proton radiotherapy, using the Charlson Comorbidity Index. Study Design and Setting. Fifty-four non-small-cell lung cancer patients, treated prospectively in a phase II clinical trial with hypofractionated proton therapy, were analyzed retrospectively to assess their burden of comorbid disease as expressed by Charlson Comorbidity Index. Using the Charlson Comorbidity Index method, a predicted survival curve based on comorbidity was formulated and compared to the observed mortality from causes other than lung cancer in the study population. Results. The study population had an average age score of 2.8 and an average Charlson Comorbidity Index of 4.7. Predicted survival was calculated to be 67% and 50% at 2 and 4 years, respectively. Actual comorbidity-specific survival at 2 and 4 years was 64% and 45%, respectively. The observed survival fell within the 95% confidence intervals of the predicted survival at all time points up to 5 years. Conclusion. Predicted mortality from concurrent disease, based on Charlson Comorbidity Index, correlated well with observed comorbidity-specific mortality. This helps substantiate the accuracy of the data coding in cause of death and strengthens previously reported disease-specific survival rates

    Clinical Study Comorbidity-Adjusted Survival in Early Stage Lung Cancer Patients Treated with Hypofractionated Proton Therapy

    No full text
    Objective. To determine the influence of comorbidity on survival in early-stage lung cancer patients treated with proton radiotherapy, using the Charlson Comorbidity Index. Study Design and Setting. Fifty-four non-small-cell lung cancer patients, treated prospectively in a phase II clinical trial with hypofractionated proton therapy, were analyzed retrospectively to assess their burden of comorbid disease as expressed by Charlson Comorbidity Index. Using the Charlson Comorbidity Index method, a predicted survival curve based on comorbidity was formulated and compared to the observed mortality from causes other than lung cancer in the study population. Results. The study population had an average age score of 2.8 and an average Charlson Comorbidity Index of 4.7. Predicted survival was calculated to be 67% and 50% at 2 and 4 years, respectively. Actual comorbidityspecific survival at 2 and 4 years was 64% and 45%, respectively. The observed survival fell within the 95% confidence intervals of the predicted survival at all time points up to 5 years. Conclusion. Predicted mortality from concurrent disease, based on Charlson Comorbidity Index, correlated well with observed comorbidity-specific mortality. This helps substantiate the accuracy of the data coding in cause of death and strengthens previously reported disease-specific survival rates

    Analysis of Intensity-Modulated Radiation Therapy (IMRT), Proton and 3D Conformal Radiotherapy (3D-CRT) for Reducing Perioperative Cardiopulmonary Complications in Esophageal Cancer Patients

    No full text
    Background. While neoadjuvant concurrent chemoradiotherapy has improved outcomes for esophageal cancer patients, surgical complication rates remain high. The most frequent perioperative complications after trimodality therapy were cardiopulmonary in nature. The radiation modality utilized can be a strong mitigating factor of perioperative complications given the location of the esophagus and its proximity to the heart and lungs. The purpose of this study is to make a dosimetric comparison of Intensity-Modulated Radiation Therapy (IMRT), proton and 3D conformal radiotherapy (3D-CRT) with regard to reducing perioperative cardiopulmonary complications in esophageal cancer patients. Materials. Ten patients with esophageal cancer treated between 2010 and 2013 were evaluated in this study. All patients were simulated with contrast-enhanced CT imaging. Separate treatment plans using proton radiotherapy, IMRT, and 3D-CRT modalities were created for each patient. Dose-volume histograms were calculated and analyzed to compare plans between the three modalities. The organs at risk (OAR) being evaluated in this study are the heart, lungs, and spinal cord. To determine statistical significance, ANOVA and two-tailed paired t-tests were performed for all data parameters. Results. The proton plans showed decreased dose to various volumes of the heart and lungs in comparison to both the IMRT and 3D-CRT plans. There was no difference between the IMRT and 3D-CRT plans in dose delivered to the lung or heart. This finding was seen consistently across the parameters analyzed in this study. Conclusions. In patients receiving radiation therapy for esophageal cancer, proton plans are technically feasible while achieving adequate coverage with lower doses delivered to the lungs and cardiac structures. This may result in decreased cardiopulmonary toxicity and less morbidity to esophageal cancer patients
    corecore