131 research outputs found

    Predicting sequence and structural specificities of RNA binding regions recognized by splicing factor SRSF1

    Get PDF
    Abstract- RNA-binding proteins (RBPs) play diverse roles in eukaryotic RNA processing. Despite their pervasive functions in coding and non-coding RNA biogenesis and regulation, elucidating the specificities that define protein-RNA interactions remains a major challenge. Here, we describe a novel model-based approach — RNAMotifModeler to identify binding consensus of RBPs by integrating sequence features and RNA secondary structures. Using RNA sequences derived from Cross-linking immunoprecipitation (CLIP) followed by high-throughput sequencing for SRSF1 proteins, we identified a purine-rich octamer ‘AGAAGAAG ’ in a highly singlestranded RNA context, which is consistent with previous knowledge. The successful implementation on SRSF1 CLIPseq data demonstrates great potential to improve our understanding on the binding specificity of RNA binding proteins

    Identification of Nuclear and Cytoplasmic mRNA Targets for the Shuttling Protein SF2/ASF

    Get PDF
    The serine and arginine-rich protein family (SR proteins) are highly conserved regulators of pre-mRNA splicing. SF2/ASF, a prototype member of the SR protein family, is a multifunctional RNA binding protein with roles in pre-mRNA splicing, mRNA export and mRNA translation. These observations suggest the intriguing hypothesis that SF2/ASF may couple splicing and translation of specific mRNA targets in vivo. Unfortunately the paucity of endogenous mRNA targets for SF2/ASF has hindered testing of this hypothesis. Here, we identify endogenous mRNAs directly cross-linked to SF2/ASF in different subcellular compartments. Cross-Linking Immunoprecipitation (CLIP) captures the in situ specificity of protein-RNA interaction and allows for the simultaneous identification of endogenous RNA targets as well as the locations of binding sites within the RNA transcript. Using the CLIP method we identified 326 binding sites for SF2/ASF in RNA transcripts from 180 protein coding genes. A purine-rich consensus motif was identified in binding sites located within exon sequences but not introns. Furthermore, 72 binding sites were occupied by SF2/ASF in different sub-cellular fractions suggesting that these binding sites may influence the splicing or translational control of endogenous mRNA targets. We demonstrate that ectopic expression of SF2/ASF regulates the splicing and polysome association of transcripts derived from the SFRS1, PABC1, NETO2 and ENSA genes. Taken together the data presented here indicate that SF2/ASF has the capacity to co-regulate the nuclear and cytoplasmic processing of specific mRNAs and provide further evidence that the nuclear history of an mRNA ma

    Using RNase sequence specificity to refine the identification of RNA-protein binding regions

    Get PDF
    Massively parallel pyrosequencing is a high-throughput technology that can sequence hundreds of thousands of DNA/RNA fragments in a single experiment. Combining it with immunoprecipitation-based biochemical assays, such as cross-linking immunoprecipitation (CLIP), provides a genome-wide method to detect the sites at which proteins bind DNA or RNA. In a CLIP-pyrosequencing experiment, the resolutions of the detected protein binding regions are partially determined by the length of the detected RNA fragments (CLIP amplicons) after trimming by RNase digestion. The lengths of these fragments usually range from 50-70 nucleotides. Many genomic regions are marked by multiple RNA fragments. In this paper, we report an empirical approach to refine the localization of protein binding regions by using the distribution pattern of the detected RNA fragments and the sequence specificity of RNase digestion. We present two regions to which multiple amplicons map as examples to demonstrate this approach

    HNRNPA1 promotes recognition of splice site decoys by U2AF2 in vivo

    Get PDF
    Alternative pre-mRNA splicing plays a major role in expanding the transcript output of human genes. This process is regulated, in part, by the interplay of trans-acting RNA binding proteins (RBPs) with myriad cis-regulatory elements scattered throughout pre-mRNAs. These molecular recognition events are critical for defining the protein-coding sequences (exons) within pre-mRNAs and directing spliceosome assembly on noncoding regions (introns). One of the earliest events in this process is recognition of the 3' splice site (3'ss) by U2 small nuclear RNA auxiliary factor 2 (U2AF2). Splicing regulators, such as the heterogeneous nuclear ribonucleoprotein A1 (HNRNPA1), influence spliceosome assembly both in vitro and in vivo, but their mechanisms of action remain poorly described on a global scale. HNRNPA1 also promotes proofreading of 3'ss sequences though a direct interaction with the U2AF heterodimer. To determine how HNRNPA1 regulates U2AF-RNA interactions in vivo, we analyzed U2AF2 RNA binding specificity using individual-nucleotide resolution crosslinking immunoprecipitation (iCLIP) in control and HNRNPA1 overexpression cells. We observed changes in the distribution of U2AF2 crosslinking sites relative to the 3'ss of alternative cassette exons but not constitutive exons upon HNRNPA1 overexpression. A subset of these events shows a concomitant increase of U2AF2 crosslinking at distal intronic regions, suggesting a shift of U2AF2 to "decoy" binding sites. Of the many noncanonical U2AF2 binding sites, Alu-derived RNA sequences represented one of the most abundant classes of HNRNPA1-dependent decoys. We propose that one way HNRNPA1 regulates exon definition is to modulate the interaction of U2AF2 with decoy or bona fide 3'ss

    Modeling the impact of floating oyster (Crassostrea virginica) aquaculture on sediment−water nutrient and oxygen fluxes

    Get PDF
    Bivalve aquaculture relies on naturally occurring phytoplankton, zooplankton, and detritus as food sources, thereby avoiding external nutrient inputs that are commonly associated with finfish aquaculture. High filtration rates and concentrated bivalve biomass within aquacul- ture operations, however, result in intense biodeposition of particulate organic matter (POM) on surrounding sediments, with potential adverse environmental impacts. Estimating the net deposi- tional flux is difficult in shallow waters due to methodological constraints and dynamic processes such as resuspension and advection. In this study, we combined sediment trap deployments with simulations from a mechanistic sediment flux model to estimate seasonal POM deposition, resus- pension, and processing within sediments in the vicinity of an eastern oyster Crassostrea virginica farm in the Choptank River, Maryland, USA. The model is the stand-alone version of a 2-layer sediment flux model currently implemented within larger models for understanding ecosystem responses to nutrient management. Modeled sediment−water fluxes were compared to observed denitrification rates and nitrite + nitrate (NO2 −+NO3 −), phosphate (PO4 3−) and dissolved O2 fluxes. Model-derived estimates of POM deposition, which represent POM incorporated and processed within the sediment, comprised a small fraction of the material collected in sediment traps. These results highlight the roles of biodeposit resuspension and transport in effectively removing oyster biodeposits away from this particular farm, resulting in a highly diminished local environmental impact. This study highlights the value of sediment models as a practical tool for computing inte- grated measures of nitrogen cycling as a function of seasonal dynamics in the vicinity of aquaculture operations

    Prioritizing single-nucleotide variations that potentially regulate alternative splicing

    Get PDF
    Recent evidence suggests that many complex diseases are caused by genetic variations that play regulatory roles in controlling gene expression. Most genetic studies focus on nonsynonymous variations that can alter the amino acid composition of a protein and are therefore believed to have the highest impact on phenotype. Synonymous variations, however, can also play important roles in disease pathogenesis by regulating pre-mRNA processing and translational control. In this study, we systematically survey the effects of single-nucleotide variations (SNVs) on binding affinity of RNA-binding proteins (RBPs). Among the 10,113 synonymous SNVs identified in 697 individuals in the 1,000 Genomes Project and distributed by Genetic Analysis Workshop 17 (GAW17), we identified 182 variations located in alternatively spliced exons that can significantly change the binding affinity of nine RBPs whose binding preferences on 7-mer RNA sequences were previously reported. We found that the minor allele frequencies of these variations are similar to those of nonsynonymous SNVs, suggesting that they are in fact functional. We propose a workflow to identify phenotype-associated regulatory SNVs that might affect alternative splicing from exome-sequencing-derived genetic variations. Based on the affecting SNVs on the quantitative traits simulated in GAW17, we further identified two and four functional SNVs that are predicted to be involved in alternative splicing regulation in traits Q1 and Q2, respectively

    Site identification in high-throughput RNA-protein interaction data

    Get PDF
    Motivation: Post-transcriptional and co-transcriptional regulation is a crucial link between genotype and phenotype. The central players are the RNA-binding proteins, and experimental technologies [such as cross-linking with immunoprecipitation-(CLIP-) and RIP-seq] for probing their activities have advanced rapidly over the course of the past decade. Statistically robust, flexible computational methods for binding site identification from high-throughput immunoprecipitation assays are largely lacking however.Results: We introduce a method for site identification which provides four key advantages over previous methods: (i) it can be applied on all variations of CLIP and RIP-seq technologies, (ii) it accurately models the underlying read-count distributions, (iii) it allows external covariates, such as transcript abundance (which we demonstrate is highly correlated with read count) to inform the site identification process and (iv) it allows for direct comparison of site usage across cell types or conditions. © The Author 2012. Published by Oxford University Press. All rights reserved

    Secretion of MCP-1 and other paracrine factors in a novel tumor-bone coculture model

    Get PDF
    BackgroundThe bone-tumor microenvironment encompasses unique interactions between the normal cells of the bone and marrow cavity and the malignant cells from a primary or metastasized cancer. A multitude of paracrine factors within this microenvironment such as the growth factor, TGF-beta, and the chemokine, MCP-1, are secreted by many of these cell types. These factors can act in concert to modulate normal and malignant cell proliferation, malignant cell migration and invasion and, often, mediate bone cancer pain. Although many valuable in vitro and in vivo models exist, identifying the relevant paracrine factors and deciphering their interactions is still a challenge. The aim of our study is to test an ex vivo coculture model that will allow monitoring of the expression, release and regulation of paracrine factors during interactions of an intact femur explant and tumor cells.MethodsIntact or marrow-depleted neonatal mouse femurs and select murine and human sarcoma or carcinoma cell lines were incubated singly or in coculture in specialized well plates. Viability of the bone and cells was determined by immunohistochemical stains, microscopy and marrow cytopreps. Secretion and mRNA expression of paracrine factors was quantitated by ELISA and real-time RT-PCR.ResultsCompartments of the bone were optimally viable for up to 48 h in culture and tumor cells for up to 4 days. Bone was the major contributor of TGF-beta and MMP2 whereas both bone and sarcoma cells secreted the chemokine MCP-1 in cocultures. Synergistic interaction between the femur and sarcoma resulted in enhanced MCP-1 secretion and expression in cocultures and was dependent on the presence of the hematopoietic component of the bone as well as other bone cells. In contrast, coculturing with breast carcinoma cells resulted in reduction of TGF-beta and MCP-1 secretion from the bone.ConclusionThese studies illustrate the feasibility of this model to examine paracrine interactions between intact bone and tumor cells. Further study of unique regulation of MCP-1 secretion and signaling between these cell types in different types of cancer will be possible using this simulated microenvironment

    Behavioral Corporate Finance: An Updated Survey

    Full text link
    corecore