26 research outputs found

    White matter changes and confrontation naming in retired aging national football league athletes

    Get PDF
    Using diffusion tensor imaging (DTI), we assessed the relationship of white matter integrity and performance on the Boston Naming Test (BNT) in a group of retired professional football players and a control group. We examined correlations between fractional anisotropy (FA) and mean diffusivity (MD) with BNT T-scores in an unbiased voxelwise analysis processed with tract-based spatial statistics (TBSS). We also analyzed the DTI data by grouping voxels together as white matter tracts and testing each tract's association with BNT T-scores. Significant voxelwise correlations between FA and BNT performance were only seen in the retired football players (p < 0.02). Two tracts had mean FA values that significantly correlated with BNT performance: forceps minor and forceps major. White matter integrity is important for distributed cognitive processes, and disruption correlates with diminished performance in athletes exposed to concussive and subconcussive brain injuries, but not in controls without such exposure

    Brain aerobic glycolysis and resilience in Alzheimer disease

    Get PDF
    The distribution of brain aerobic glycolysis (AG) in normal young adults correlates spatially with amyloid-beta (Aβ) deposition in individuals with symptomatic and preclinical Alzheimer disease (AD). Brain AG decreases with age, but the functional significance of this decrease with regard to the development of AD symptomatology is poorly understood. Using PET measurements of regional blood flow, oxygen consumption, and glucose utilization-from which we derive AG-we find that cognitive impairment is strongly associated with loss of the typical youthful pattern of AG. In contrast, amyloid positivity without cognitive impairment was associated with preservation of youthful brain AG, which was even higher than that seen in cognitively unimpaired, amyloid negative adults. Similar findings were not seen for blood flow nor oxygen consumption. Finally, in cognitively unimpaired adults, white matter hyperintensity burden was found to be specifically associated with decreased youthful brain AG. Our results suggest that AG may have a role in the resilience and/or response to early stages of amyloid pathology and that age-related white matter disease may impair this process

    Covariance-based vs. correlation-based functional connectivity dissociates healthy aging from Alzheimer disease

    Get PDF
    Prior studies of aging and Alzheimer disease have evaluated resting state functional connectivity (FC) using either seed-based correlation (SBC) or independent component analysis (ICA), with a focus on particular functional systems. SBC and ICA both are insensitive to differences in signal amplitude. At the same time, accumulating evidence indicates that the amplitude of spontaneous BOLD signal fluctuations is physiologically meaningful. We systematically compared covariance-based FC, which is sensitive to amplitude, vs. correlation-based FC, which is not, in affected individuals and controls drawn from two cohorts of participants including autosomal dominant Alzheimer disease (ADAD), late onset Alzheimer disease (LOAD), and age-matched controls. Functional connectivity was computed over 222 regions of interest and group differences were evaluated in terms of components projected onto a space of lower dimension. Our principal observations are: (1) Aging is associated with global loss of resting state fMRI signal amplitude that is approximately uniform across resting state networks. (2) Thus, covariance FC measures decrease with age whereas correlation FC is relatively preserved in healthy aging. (3) In contrast, symptomatic ADAD and LOAD both lead to loss of spontaneous activity amplitude as well as severely degraded correlation structure. These results demonstrate a double dissociation between age vs. Alzheimer disease and the amplitude vs. correlation structure of resting state BOLD signals. Modeling results suggest that the AD-associated loss of correlation structure is attributable to a relative increase in the fraction of locally restricted as opposed to widely shared variance

    CSF Tau phosphorylation at Thr205 is associated with loss of white matter integrity in autosomal dominant Alzheimer disease

    Get PDF
    BACKGROUND: Hyperphosphorylation of tau leads to conformational changes that destabilize microtubules and hinder axonal transport in Alzheimer\u27s disease (AD). However, it remains unknown whether white matter (WM) decline due to AD is associated with specific Tau phosphorylation site(s). METHODS: In autosomal dominant AD (ADAD) mutation carriers (MC) and non-carriers (NC) we compared cerebrospinal fluid (CSF) phosphorylation at tau sites (pT217, pT181, pS202, and pT205) and total tau with WM measures, as derived from diffusion tensor imaging (DTI), and cognition. A WM composite metric, derived from a principal component analysis, was used to identify spatial decline seen in ADAD. RESULTS: The WM composite explained over 70% of the variance in MC. WM regions that strongly contributed to the spatial topography were located in callosal and cingulate regions. Loss of integrity within the WM composite was strongly associated with AD progression in MC as defined by the estimated years to onset (EYO) and cognitive decline. A linear regression demonstrated that amyloid, gray matter atrophy and phosphorylation at CSF tau site pT205 each uniquely explained a reduction in the WM composite within MC that was independent of vascular changes (white matter hyperintensities), and age. Hyperphosphorylation of CSF tau at other sites and total tau did not significantly predict WM composite loss. CONCLUSIONS: We identified a site-specific relationship between CSF phosphorylated tau and WM decline within MC. The presence of both amyloid deposition and Tau phosphorylation at pT205 were associated with WM composite loss. These findings highlight a primary AD-specific mechanism for WM dysfunction that is tightly coupled to symptom manifestation and cognitive decline

    Persistence of viral reservoirs in multiple tissues after antiretroviral therapy suppression in a macaque RT-SHIV model

    Get PDF
    Although antiretroviral therapy (ART) can suppress HIV-1 replication sufficiently to eliminate measurable plasma viremia, infected cells remain and ensure viral recrudescence after discontinuation of ART. We used a macaque model of HIV-1/AIDS to evaluate the location of infected cells during ART. Twelve macaques were infected with RT-SHIVmne, a SIV containing HIV-1 reverse transcriptase, conferring sensitivity to non-nucleoside reverse transcriptase inhibitors (NNRTIs). Ten to fourteen weeks post-infection, 6 animals were treated with 3 or 4 antiretroviral drugs for 17-20 weeks; 6 control animals remained untreated. Viral DNA (vDNA) and RNA (vRNA) were measured in peripheral blood mononuclear cells (PBMC) and at necropsy in multiple tissues by quantitative PCR and RT-PCR. The majority of virally infected cells were located in lymphoid tissues with variable levels in the gastrointestinal tract of both treated and untreated animals. Tissue viral DNA levels correlated with week 1 plasma viremia, suggesting that tissues that harbor proviral DNA are established within the first week of infection. PBMC vDNA levels did not correlate with plasma viremia or tissue levels of vDNA. vRNA levels were high in lymphoid and gastrointestinal tissues of the untreated animals; animals on ART had little vRNA expressed in tissues and virus could not be cultured from lymph node resting CD4+ cells after 17-20 weeks on ART, indicating little or no ongoing viral replication. Strategies for eradication of HIV-1 will need to target residual virus in ART suppressed individuals, which may not be accurately reflected by frequencies of infected cells in blood. © 2013 Kline et al

    The Digital MIQE Guidelines Update: Minimum Information for Publication of Quantitative Digital PCR Experiments for 2020

    Get PDF
    Digital PCR (dPCR) has developed considerably since the publication of the Minimum Information for Publication of Digital PCR Experiments (dMIQE) guidelines in 2013, with advances in instrumentation, software, applications, and our understanding of its technological potential. Yet these developments also have associated challenges; data analysis steps, including threshold setting, can be difficult and preanalytical steps required to purify, concentrate, and modify nucleic acids can lead to measurement error. To assist independent corroboration of conclusions, comprehensive disclosure of all relevant experimental details is required. To support the community and reflect the growing use of dPCR, we present an update to dMIQE, dMIQE2020, including a simplified dMIQE table format to assist researchers in providing key experimental information and understanding of the associated experimental process. Adoption of dMIQE2020 by the scientific community will assist in standardizing experimental protocols, maximize efficient utilization of resources, and further enhance the impact of this powerful technology

    Suppressing quantum errors by scaling a surface code logical qubit

    Full text link
    Practical quantum computing will require error rates that are well below what is achievable with physical qubits. Quantum error correction offers a path to algorithmically-relevant error rates by encoding logical qubits within many physical qubits, where increasing the number of physical qubits enhances protection against physical errors. However, introducing more qubits also increases the number of error sources, so the density of errors must be sufficiently low in order for logical performance to improve with increasing code size. Here, we report the measurement of logical qubit performance scaling across multiple code sizes, and demonstrate that our system of superconducting qubits has sufficient performance to overcome the additional errors from increasing qubit number. We find our distance-5 surface code logical qubit modestly outperforms an ensemble of distance-3 logical qubits on average, both in terms of logical error probability over 25 cycles and logical error per cycle (2.914%±0.016%2.914\%\pm 0.016\% compared to 3.028%±0.023%3.028\%\pm 0.023\%). To investigate damaging, low-probability error sources, we run a distance-25 repetition code and observe a 1.7×1061.7\times10^{-6} logical error per round floor set by a single high-energy event (1.6×1071.6\times10^{-7} when excluding this event). We are able to accurately model our experiment, and from this model we can extract error budgets that highlight the biggest challenges for future systems. These results mark the first experimental demonstration where quantum error correction begins to improve performance with increasing qubit number, illuminating the path to reaching the logical error rates required for computation.Comment: Main text: 6 pages, 4 figures. v2: Update author list, references, Fig. S12, Table I

    Measurement-induced entanglement and teleportation on a noisy quantum processor

    Full text link
    Measurement has a special role in quantum theory: by collapsing the wavefunction it can enable phenomena such as teleportation and thereby alter the "arrow of time" that constrains unitary evolution. When integrated in many-body dynamics, measurements can lead to emergent patterns of quantum information in space-time that go beyond established paradigms for characterizing phases, either in or out of equilibrium. On present-day NISQ processors, the experimental realization of this physics is challenging due to noise, hardware limitations, and the stochastic nature of quantum measurement. Here we address each of these experimental challenges and investigate measurement-induced quantum information phases on up to 70 superconducting qubits. By leveraging the interchangeability of space and time, we use a duality mapping, to avoid mid-circuit measurement and access different manifestations of the underlying phases -- from entanglement scaling to measurement-induced teleportation -- in a unified way. We obtain finite-size signatures of a phase transition with a decoding protocol that correlates the experimental measurement record with classical simulation data. The phases display sharply different sensitivity to noise, which we exploit to turn an inherent hardware limitation into a useful diagnostic. Our work demonstrates an approach to realize measurement-induced physics at scales that are at the limits of current NISQ processors

    Non-Abelian braiding of graph vertices in a superconducting processor

    Full text link
    Indistinguishability of particles is a fundamental principle of quantum mechanics. For all elementary and quasiparticles observed to date - including fermions, bosons, and Abelian anyons - this principle guarantees that the braiding of identical particles leaves the system unchanged. However, in two spatial dimensions, an intriguing possibility exists: braiding of non-Abelian anyons causes rotations in a space of topologically degenerate wavefunctions. Hence, it can change the observables of the system without violating the principle of indistinguishability. Despite the well developed mathematical description of non-Abelian anyons and numerous theoretical proposals, the experimental observation of their exchange statistics has remained elusive for decades. Controllable many-body quantum states generated on quantum processors offer another path for exploring these fundamental phenomena. While efforts on conventional solid-state platforms typically involve Hamiltonian dynamics of quasi-particles, superconducting quantum processors allow for directly manipulating the many-body wavefunction via unitary gates. Building on predictions that stabilizer codes can host projective non-Abelian Ising anyons, we implement a generalized stabilizer code and unitary protocol to create and braid them. This allows us to experimentally verify the fusion rules of the anyons and braid them to realize their statistics. We then study the prospect of employing the anyons for quantum computation and utilize braiding to create an entangled state of anyons encoding three logical qubits. Our work provides new insights about non-Abelian braiding and - through the future inclusion of error correction to achieve topological protection - could open a path toward fault-tolerant quantum computing
    corecore