8 research outputs found

    Melatonin Promotes Oligodendroglial Maturation of Injured White Matter in Neonatal Rats

    Get PDF
    OBJECTIVE:To investigate the effects of melatonin treatment in a rat model of white matter damage (WMD) in the developing brain. Additionally, we aim to delineate the cellular mechanisms of melatonin effect on the oligodendroglial cell lineage. METHODS:A unilateral ligation of the uterine artery in pregnant rat at the embryonic day 17 induces fetal hypoxia and subsequent growth restriction (GR) in neonatal pups. GR and control pups received a daily intra-peritoneal injection of melatonin from birth to post-natal day (P) 3. RESULTS:Melatonin administration was associated with a dramatic decrease in microglial activation and astroglial reaction compared to untreated GR pups. At P14, melatonin prevented white matter myelination defects with an increased number of mature oligodendrocytes (APC-immunoreactive) in treated GR pups. Conversely, melatonin was not found to be associated with an increased density of total oligodendrocytes (Olig2-immunoreactive), suggesting that melatonin is able to promote oligodendrocyte maturation but not proliferation. These effects appear to be melatonin-receptor dependent and were reproduced in vitro. INTERPRETATION:These data suggest that melatonin has a strong protective effect on developing damaged white matter through decreased microglial activation and oligodendroglial maturation leading to a normalization of the myelination process. Consequently, melatonin should be a considered as an effective neuroprotective candidate not only in perinatal brain damage but also in inflammatory and demyelinating diseases observed in adults

    Application de contraintes sur des systèmes complexes artificiels ou vivants : dégonflement de liposomes fonctionnalisés et réorganisation mécanosensible du cytosquelette de cellules Dictyostelium.

    Get PDF
    Une bourse de l'ARC (Association pour la Recherche sur le Cancer) et deux bourses EMBO (European Molecular Biology Organization) ont été obtenues pour achever ce travail de thèse.During this work, 2 approaches have been explored. First, I quantified the osmotic deswelling of liposomes filled with an agarose gel. The production of such artificial systems aims at mimicking cell behavior under the same constraints. Particularly, I observed that these functionnalized liposomes with a gel concentration between 0.07 and 0.18% w/w adopted crenated morphologies when strongly deswelled. These original shapes look like the ones of echinocytes sometimes seen with red blood cells. The gel is responsible for these shapes, does not affect deswelling kinetics but its elastic pressure stops more rapidly the osmotic deswelling compared to aqueous liposomes. This brings evidence for a water retention effect. In a second approach, I studied the effect of hydrodynamical constraints on Dictyostelium amoebae adhering to a substrate. I quantified the mechanosensitive reorganization of the cytoskeleton of these living cells. To get relocalization kinetics of major cytoskeleton proteins in response to flow forces, I labeled actin and myosin-II with fluorescent proteins (GFP/mRFP) and designed a flow chamber enabling to rapidly change the flow direction. I showed that cells orient against flow forces and after a flow reversal reorient against new forces by inverting their polarity: first, actin depolymerizes, then actin rich protrusions are emitted against new mechanical forces and 15 sec later, the rear edge retracts with a myo-II crescent. Moreover, the actin-myosin contractility is dispensable to sense forces. Similar experiments by inverting the direction of a chemotactic gradient show that this cell reorientation process is not specific of flow experiments. This work proves the existence of a rapid inhibiting signal (leading to actin depolymerization) which is not taken into account in current models of chemotaxis. Finally, the visualization tools that I developped enable to study the role of proteins and cellular structures in mechanotransduction.Durant ce travail, deux approches ont été explorées. Dans la première, j'ai quantifié le dégonflement osmotique de liposomes remplis d'un gel d'agarose. La fabrication de tels systèmes reconstitués vise à permettre de mimer le comportement de cellules soumises aux mêmes contraintes. En particulier, j'ai observé que ces liposomes fonctionnalisés acquièrent des morphologies crénelées lors de leur dégonflement pour une concentration du gel comprise entre 0.07 et 0.18 % en masse. Ces formes originales ressemblent à celles d'échinocytes parfois prises par les globules rouges. Le gel est responsable de l'apparition de ces formes, ne modifie pas les cinétiques de dégonflement mais sa pression élastique arrête précocement le dégonflement comparativement aux liposomes aqueux, mettant en évidence un phénomène de rétention d'eau. Dans la deuxième approche, j'ai étudié l'effet de contraintes hydrodynamiques sur des amibes Dictyostelium adhérentes à un substrat et ai quantifié la réorganisation mécanosensible du cytosquelette de ces cellules vivantes. Pour obtenir les cinétiques de relocalisation de protéines majeures du cytosquelette en réponse aux forces d'un flux, j'ai marqué l'actine et la myosine-II avec des protéines fluorescentes et ai fabriqué une chambre à flux permettant de changer rapidement la direction du flux. J'ai montré que les cellules s'orientent contre les forces du flux et se réorientent contre en inversant leur polarité après une inversion du flux : d'abord l'actine dépolymérise puis des protrusions sont émises contre les nouvelles forces mécaniques, et 15 sec plus tard, l'arrière rétracte en utilisant la myo-II. De plus, la contractilité du système actine-myosine n'est pas nécessaire pour sentir les forces. Des expériences similaires en inversant la direction d'un gradient de chimioattractants montrent que ce processus de réorientation cellulaire n'est pas spécifique d'expériences sous flux. Ce travail met en évidence l'existence d'un signal inhibiteur rapide menant à la dépolymérisation de l'actine, signal qui n'est pas pris en compte dans les modèles actuels expliquant la réponse chimiotactique. Enfin, les outils de visualisation que j'ai développés permettent d'étudier le rôle de protéines et de structures cellulaires dans la mécanotransduction

    Stem cell therapy for neonatal brain injury:perspectives and challenges

    Get PDF
    International audienceCerebral palsy is a major health problem caused by brain damage during pregnancy, delivery, or the immediate postnatal period. Perinatal stroke, intraventricular hemorrhage, and asphyxia are the most common causes of neonatal brain damage. Periventricular white matter damage (periventricular leukomalacia) is the predominant form in premature infants and the most common antecedent of cerebral palsy. Stem cell treatment has proven effective in restoring injured organs and tissues in animal models. The potential of stem cells for self-renewal and differentiation translates into substantial neuroprotection and neuroregeneration in the animal brain, with minimal risks of rejection and side effects. Stem cell treatments described to date have used neural stem cells, embryonic stem cells, mesenchymal stem cells, umbilical cord stem cells, and induced pluripotent stem cells. Most of these treatments are still experimental. In this review, we focus on the efficacy of stem cell therapy in animal models of cerebral palsy, and discuss potential implications for current and future clinical trials

    Glial response to 17β-estradiol in neonatal rats with excitotoxic brain injury

    Get PDF
    White-matter injury is the most common cause of the adverse neurodevelopmental outcomes observed in preterm infants. Only few options exist to prevent perinatal brain injury associated to preterm delivery. 17β-estradiol (E2) is the predominant estrogen in circulation and has been shown to be neuroprotective in vitro and in vivo. However, while E2 has been found to modulate inflammation in adult models of brain damage, how estrogens influence glial cells response in the developing brain needs further investigations. Using a model of ibotenate-induced brain injury, we have refined the effects of E2 in the developing brain. E2 provides significant neuroprotection both in the cortical plate and the white matter in neonatal rats subjected to excitotoxic insult mimicking white matter and cortical damages frequently observed in very preterm infants. E2 promotes significant changes in microglial phenotypes balance in response to brain injury and the acceleration of oligodendrocyte maturation. Maturational effects of E2 on myelination process were observed both in vivo and in vitro. Altogether, these data demonstrate that response of glial cells to E2 could be responsible for its neuroprotective properties in neonatal excitotoxic brain injury

    Implanted neurosphere-derived precursors promote recovery after neonatal excitotoxic brain injury

    No full text
    International audienceBrain damage through excitotoxic mechanisms is a major cause of cerebral palsy in infants. This phenomenon usually occurs during the fetal period in human, and often leads to lifelong neurological morbidity with cognitive and sensorimotor impairment. However, there is currently no effective therapy. Significant recovery of brain function through neural stem cell implantation has been shown in several animal models of brain damage, but remains to be investigated in detail in neonates. In the present study, we evaluated the effect of cell therapy in a well-established neonatal mouse model of cerebral palsy induced by excitotoxicity (ibotenate treatment on postnatal day 5). Neurosphere-derived precursors or control cells (fibroblasts) were implanted into injured and control brains contralateral to the site of injury, and the fate of implanted cells was monitored by immunohistochemistry. Behavioral tests were performed in animals that received early (4 h after injury) or late (72 h after injury) cell implants. We show that neurosphere-derived precursors implanted into the injured brains of 5-day-old pups migrated to the lesion site, remained undifferentiated at day 10, and differentiated into oligodendrocyte and neurons at day 42. Although grafted cells finally die there few weeks later, this procedure triggered a reduction in lesion size and an improvement in memory performance compared with untreated animals, both 2 and 5 weeks after treatment. Although further studies are warranted, cell therapy could be a future therapeutic strategy for neonates with acute excitotoxic brain injury
    corecore