10 research outputs found

    Ionic liquid flow along the carbon nanotube with DC electric field

    Get PDF
    Liquid pumping can occur along the outer surface of an electrode under a DC electric field. For biological applications, a better understanding of the ionic solution pumping mechanism is required. Here, we fabricated CNT wire electrodes (CWEs) and tungsten wire electrodes (TWEs) of various diameters to assess an ionic solution pumping. A DC electric field created by a bias of several volts pumped the ionic solution in the direction of the negatively biased electrode. The resulting electroosmotic flow was attributed to the movement of an electric double layer near the electrode, and the flow rates along the CWEs were on the order of picoliters per minute. According to electric field analysis, the z-directional electric field around the meniscus of the small electrode was more concentrated than that of the larger electrode. Thus, the pumping effect increased as the electrode diameter decreased. Interestingly in CWEs, the initiating voltage for liquid pumping did not change with increasing diameter, up to 20 mu m. We classified into three pumping zones, according to the initiating voltage and faradaic reaction. Liquid pumping using the CWEs could provide a new method for biological studies with adoptable flow rates and a larger 'Recommended pumping zone'.open116sciescopu

    Recyclable Superhydrophobic Surface Prepared via Electrospinning and Electrospraying Using Waste Polyethylene Terephthalate for Self-Cleaning Applications

    No full text
    Superhydrophobic surfaces, i.e., surfaces with a water contact angle (WCA) ≥ 150°, have gained much attention as they are multifunctional surfaces with features such as self-cleaning, which can be useful in various applications such as those requiring waterproof and/or protective films. In this study, we prepared a solution from recycled polyethylene terephthalate (PET) and fabricated a superhydrophobic surface using electrospinning and electrospraying processes. We observed that the fabricated geometry varies depending on the solution conditions, and based on this, we fabricated a hierarchical structure. From the results, the optimized structure exhibited a very high WCA (>156.6°). Additionally, our investigation into the self-cleaning functionality and solar panel efficiency of the fabricated surface revealed promising prospects for the production of superhydrophobic surfaces utilizing recycled PET, with potential applications as protective films for solar panels. Consequently, this research contributes significantly to the advancement of environmentally friendly processes and the progress of recycling technology

    Investigation of factors affecting hypothermic pelvic tissue cooling using bio-heat simulation based on MRI-segmented anatomic models

    No full text
    This study applied a simulation method to map the temperature distribution based on magnetic resonance imaging (MRI) of individual patients, and investigated the influence of different pelvic tissue types as well as the choice of thermal property parameters on the efficiency of endorectal cooling balloon (ECB). MR images of four subjects with different prostate sizes and pelvic tissue compositions, including fatty tissue and venous plexus, were analyzed. The MR images acquired using endorectal coil provided a realistic geometry of deformed prostate that resembled the anatomy in the presence of ECB. A single slice with the largest two-dimensional (2D) cross-sectional area of the prostate gland was selected for analysis. The rectal wall, prostate gland, peri-rectal fatty tissue, peri-prostatic fatty tissue, peri-prostatic venous plexus, and urinary bladder were manually segmented. Pennes’ bioheat thermal model was used to simulate the temperature distribution dynamics, by using an in-house finite element mesh based solver written in Matlab. The results showed that prostate size and periprostatic venous plexus were two major factors affecting ECB cooling efficiency. For cases with negligible amount of venous plexus and small prostate, the averaged temperature in the prostate and neurovascular bundles could be cooled down to 25°C within 30 minutes. For cases with abundant venous plexus and large prostate, the temperature could not reach 25°C at the end of 3 hours cooling. Large prostate made the cooling difficult to propagate through. The impact of fatty tissue on cooling effect was small. The filling of bladder with warm urine during the ECB cooling procedure did not affect the temperature in the prostate or NVB. In addition to the 2D simulation, in one case a 3D pelvic model was constructed for volumetric simulation. It was found that the 2D slice with the largest cross-sectional area of prostate had the most abundant venous plexus, and was the most difficult slice to cool, thus it may provide a conservative prediction of the cooling effect. This feasibility study demonstrated that the simulation tool could potentially be used for adjusting the setting of ECB for individual patients during hypothermic radical prostatectomy. Further studies using MR thermometry are required to validate the in silico results obtained using simulation

    From basic research to the clinic: innovative therapies for ALS and FTD in the pipeline

    No full text
    corecore