21 research outputs found

    Protecting asset value and driving performance with a dynamic, risk-based contingency fund

    No full text
    We present a risk-based contingency fund management methodology to mitigate the impact of external risks on asset value and performance. Many asset intensive industries, such as water and energy utilities, are significantly affected by external risks such as extreme weather events. We put the case for a centrally held risk-based contingency fund that would mitigate against ‘medium’ impact ‘medium’ probability events that fall outside of large losses covered by insurance and smaller ‘normal’ operating losses. Our risk-based contingency approach is appropriate for short-term business planning (1–5 years) and would complement longer term planning, for example climate change adaptation and mitigation strategies. Our approach offers a risk-based methodology to manage contingency that is explicit and defensible. Critically, our methodology allows contingency to be managed dynamically as risk probabilities and impacts change, creating a mechanism for contingency funds to be periodically released if risk exposure reduces. The long-term benefit of dynamic, risk-based contingency is to reduce the impact of external risks and support long-term sustainability

    Calorimetry Outside the Box: A New Window into the Plasma Proteome

    No full text
    Differential scanning calorimetry provides a new window into the plasma proteome. Plasma from normal individuals yields a characteristic, reproducible thermogram that appears to represent the weighted sum of denaturation profiles of the most abundant constituent plasma proteins. Plasma from diseased individuals yields dramatically different signature thermograms. Thermograms from individuals suffering from rheumatoid arthritis, systemic lupus, and Lyme disease were measured. Each disease appears to have a distinctive and characteristic thermogram. The difference in thermograms between normal and diseased individuals is not caused by radical changes in the concentrations of the most abundant plasma proteins but rather appears to result from interaction of as yet unknown biomarkers with the major plasma proteins. These results signal a novel use for calorimetry as a diagnostic tool

    Advances in inorganic geochemistry

    No full text
    corecore