74 research outputs found

    Prospects to improve the nutritional quality of crops

    Get PDF
    A growing world population as well as the need to enhance sustainability and health create challenges for crop breeding. To address these challenges, not only quantitative but also qualitative improvements are needed, especially regarding the macro- and micronutrient composition and content. In this review, we describe different examples of how the nutritional quality of crops and the bioavailability of individual nutrients can be optimised. We focus on increasing protein content, the use of alternative protein crops and improving protein functionality. Furthermore, approaches to enhance the content of vitamins and minerals as well as healthy specialised metabolites and long-chain polyunsaturated fatty acids are considered. In addition, methods to reduce antinutrients and toxins are presented. These approaches could help to decrease the ‘hidden hunger’ caused by micronutrient deficiencies. Furthermore, a more diverse crop range with improved nutritional profile could help to shift to healthier and more sustainable plant-based diets

    Prospects to improve the nutritional quality of crops

    Get PDF
    A growing world population as well as the need to enhance sustainability and health create challenges for crop breeding. To address these challenges, not only quantitative but also qualitative improvements are needed, especially regarding the macro- and micronutrient composition and content. In this review, we describe different examples of how the nutritional quality of crops and the bioavailability of individual nutrients can be optimised. We focus on increasing protein content, the use of alternative protein crops and improving protein functionality. Furthermore, approaches to enhance the content of vitamins and minerals as well as healthy specialised metabolites and long-chain polyunsaturated fatty acids are considered. In addition, methods to reduce antinutrients and toxins are presented. These approaches could help to decrease the ‘hidden hunger’ caused by micronutrient deficiencies. Furthermore, a more diverse crop range with improved nutritional profile could help to shift to healthier and more sustainable plant-based diets

    Improving crop yield potential: Underlying biological processes and future prospects

    Get PDF
    The growing world population and global increases in the standard of living both result in an increasing demand for food, feed and other plant‐derived products. In the coming years, plant‐based research will be among the major drivers ensuring food security and the expansion of the bio‐based economy. Crop productivity is determined by several factors, including the available physical and agricultural resources, crop management, and the resource use efficiency, quality and intrinsic yield potential of the chosen crop. This review focuses on intrinsic yield potential, since understanding its determinants and their biological basis will allow to maximize the plant's potential in food and energy production. Yield potential is determined by a variety of complex traits that integrate strictly regulated processes and their underlying gene regulatory networks. Due to this inherent complexity, numerous potential targets have been identified that could be exploited to increase crop yield. These encompass diverse metabolic and physical processes at the cellular, organ and canopy level. We present an overview of some of the distinct biological processes considered to be crucial for yield determination that could further be exploited to improve future crop productivity

    Birth of a Photosynthetic Chassis: A MoClo Toolkit Enabling Synthetic Biology in the Microalga Chlamydomonas reinhardtii.

    Get PDF
    Microalgae are regarded as promising organisms to develop innovative concepts based on their photosynthetic capacity that offers more sustainable production than heterotrophic hosts. However, to realize their potential as green cell factories, a major challenge is to make microalgae easier to engineer. A promising approach for rapid and predictable genetic manipulation is to use standardized synthetic biology tools and workflows. To this end we have developed a Modular Cloning toolkit for the green microalga Chlamydomonas reinhardtii. It is based on Golden Gate cloning with standard syntax, and comprises 119 openly distributed genetic parts, most of which have been functionally validated in several strains. It contains promoters, UTRs, terminators, tags, reporters, antibiotic resistance genes, and introns cloned in various positions to allow maximum modularity. The toolkit enables rapid building of engineered cells for both fundamental research and algal biotechnology. This work will make Chlamydomonas the next chassis for sustainable synthetic biology

    Non-photosynthetic plastids as hosts for metabolic engineering

    No full text
    Using plants as hosts for production of complex, high-value compounds and therapeutic proteins has gained increasing momentum over the past decade. Recent advances in metabolic engineering techniques using synthetic biology have set the stage for production yields to become economically attractive, but more refined design strategies are required to increase product yields without compromising development and growth of the host system. The ability of plant cells to differentiate into various tissues in combination with a high level of cellular compartmentalization represents so far the most unexploited plant-specific resource. Plant cells contain organelles called plastids that retain their own genome, harbour unique biosynthetic pathways and differentiate into distinct plastid types upon environmental and developmental cues. Chloroplasts, the plastid type hosting the photosynthetic processes in green tissues, have proven to be suitable for high yield protein and bio-compound production. Unfortunately, chloroplast manipulation often affects photosynthetic efficiency and therefore plant fitness. In this respect, plastids of non-photosynthetic tissues, which have focused metabolisms for synthesis and storage of particular classes of compounds, might prove more suitable for engineering the production and storage of non-native metabolites without affecting plant fitness. This review provides the current state of knowledge on the molecular mechanisms involved in plastid differentiation and focuses on non-photosynthetic plastids as alternative biotechnological platforms for metabolic engineering.</p

    Green plant photosystem I binds light-harvesting complex I on one side of the complex

    Get PDF
    We report a structural characterization by electron microscopy of green plant photosystem I solubilized by the mild detergent n-dodecyl-alpha -D-maltoside. It is shown by immunoblotting that the isolated complexes contain all photosystem I core proteins and all peripheral light-havesting proteins. The electron microscopic analysis is based on a large data set of 14 000 negatively stained single-particle projections and reveals that most of the complexes are oval-shaped monomers. The monomers have a tendency to associate into artificial dimers, trimers, and tetramers in which the monomers are oppositely oriented. Classification of the dimeric complexes suggests that some of the monomers lack a part of the peripheral antenna. On the basis of a comparison with projections from trimeric photosystem I complexes from cyanobacteria, we conclude that light-harvesting complex I only binds to the core complex at the side of the photosystem I F/J subunits and does not cause structural hindrances for the type of trimerization observed in cyanobacterial photosystem I
    corecore