24,583 research outputs found

    Anatomy of three-body decay II. Decay mechanism and resonance structure

    Full text link
    We use the hyperspherical adiabatic expansion method to discuss the the two mechanisms of sequential and direct three-body decay. Both short-range and Coulomb interactions are included. Resonances are assumed initially populated by a process independent of the subsequent decay. The lowest adiabatic potentials describe the resonances rather accurately at distances smaller than the outer turning point of the confining barrier. We illustrate with realistic examples of nuclei from neutron (6^{6}He) and proton (17^{17}Ne) driplines as well as excited states of beta-stable nuclei (12^{12}C).Comment: To be published in Nuclear Physics

    Ammonia emissions from deciduous forest after leaf fall

    Get PDF
    The understanding of biochemical feedback mechanisms in the climate system is lacking knowledge in relation to bi-directional ammonia (NH3) exchange between natural ecosystems and the atmosphere. We therefore study the atmospheric NH3 fluxes during a 25-day period during autumn 2010 (21 October to 15 November) for the Danish beech forest Lille Bøgeskov to address the hypothesis that NH3 emissions occur from deciduous forests in relation to leaf fall. This is accomplished by using observations of vegetation status, NH3 fluxes and model calculations. Vegetation status was observed using plant area index (PAI) and leaf area index (LAI). NH3 fluxes were measured using the relaxed eddy accumulation (REA) method. The REA-based NH3 concentrations were compared to NH3 denuder measurements. Model calculations of the atmospheric NH3 concentration were obtained with the Danish Ammonia MOdelling System (DAMOS). The relative contribution from the forest components to the atmospheric NH3 flux was assessed using a simple two-layer bi-directional canopy compensation point model. A total of 57.7% of the fluxes measured showed emission and 19.5% showed deposition. A clear tendency of the flux going from deposition of −0.25 ± 0.30 μg NH3-N m−2 s−1 to emission of up to 0.67 ± 0.28 μg NH3-N m−2 s−1 throughout the measurement period was found. In the leaf fall period (23 October to 8 November), an increase in the atmospheric NH3 concentrations was related to the increasing forest NH3 flux. Following leaf fall, the magnitude and temporal structure of the measured NH3 emission fluxes could be adequately reproduced with the bi-directional resistance model; it suggested the forest ground layer (soil and litter) to be the main contributing component to the NH3 emissions. The modelled concentration from DAMOS fits well the measured concentrations before leaf fall, but during and after leaf fall, the modelled concentrations are too low. The results indicate that the missing contribution to atmospheric NH3 concentration from vegetative surfaces related to leaf fall are of a relatively large magnitude. We therefore conclude that emissions from deciduous forests are important to include in model calculations of atmospheric NH3 for forest ecosystems. Finally, diurnal variations in the measured NH3 concentrations were related to meteorological conditions, forest phenology and the spatial distribution of local anthropogenic NH3 sources. This suggests that an accurate description of ammonia fluxes over forest ecosystems requires a dynamic description of atmospheric and vegetation processes

    Scattering into Cones and Flux across Surfaces in Quantum Mechanics: a Pathwise Probabilistic Approach

    Full text link
    We show how the scattering-into-cones and flux-across-surfaces theorems in Quantum Mechanics have very intuitive pathwise probabilistic versions based on some results by Carlen about large time behaviour of paths of Nelson diffusions. The quantum mechanical results can be then recovered by taking expectations in our pathwise statements.Comment: To appear in Journal of Mathematical Physic

    The existence of steady flow in a collapsed tube

    Get PDF

    Rapid invisible frequency tagging reveals nonlinear integration of auditory and visual information

    Get PDF
    During communication in real-life settings, the brain integrates information from auditory and visual modalities to form a unified percept of our environment. In the current magnetoencephalography (MEG) study, we used rapid invisible frequency tagging (RIFT) to generate steady-state evoked fields and investigated the integration of audiovisual information in a semantic context. We presented participants with videos of an actress uttering action verbs (auditory; tagged at 61 Hz) accompanied by a gesture (visual; tagged at 68 Hz, using a projector with a 1440 Hz refresh rate). Integration ease was manipulated by auditory factors (clear/degraded speech) and visual factors (congruent/incongruent gesture). We identified MEG spectral peaks at the individual (61/68 Hz) tagging frequencies. We furthermore observed a peak at the intermodulation frequency of the auditory and visually tagged signals (fvisual – fauditory = 7 Hz), specifically when integration was easiest (i.e., when speech was clear and accompanied by a congruent gesture). This intermodulation peak is a signature of nonlinear audiovisual integration, and was strongest in left inferior frontal gyrus and left temporal regions; areas known to be involved in speech-gesture integration. The enhanced power at the intermodulation frequency thus reflects the ease of integration and demonstrates that speech-gesture information interacts in higher-order language areas. Furthermore, we provide a proof-of-principle of the use of RIFT to study the integration of audiovisual stimuli, in relation to, for instance, semantic context

    Decay of low-lying 12C resonances within a 3alpha cluster model

    Full text link
    We compute energy distributions of three α\alpha-particles emerging from the decay of 12^{12}C resonances by means of the hyperspherical adiabatic expansion method combined with complex scaling. The large distance continuum properties of the wave functions are crucial and must be accurately calculated. The substantial changes from small to large distances determine the decay mechanisms. We illustrate by computing the energy distributions from decays of the 1+1^{+} and 33^--resonances in 12^{12}C. These states are dominated by direct and sequential decays into the three-body continuum respectively.Comment: 5 pages, 3 figures. Proceedings of the Clusters '07 conference held in Stratford-upon-Avon in September 200

    Layer Features of the Lattice Gas Model for Self-Organized Criticality

    Full text link
    A layer-by-layer description of the asymmetric lattice gas model for 1/f-noise suggested by Jensen [Phys. Rev. Lett. 64, 3103 (1990)] is presented. The power spectra of the lattice layers in the direction perpendicular to the particle flux is studied in order to understand how the white noise at the input boundary evolves, on the average, into 1/f-noise for the system. The effects of high boundary drive and uniform driving force on the power spectrum of the total number of diffusing particles are considered. In the case of nearest-neighbor particle interactions, high statistics simulation results show that the power spectra of single lattice layers are characterized by different βx\beta_x exponents such that βx1.9\beta_x \to 1.9 as one approaches the outer boundary.Comment: LaTeX, figures upon reques

    Structure and decay at rapid proton capture waiting points

    Full text link
    We investigate the region of the nuclear chart around A70A \simeq 70 from a three-body perspective, where we compute reaction rates for the radiative capture of two protons. One key quantity is here the photon dissociation cross section for the inverse process where two protons are liberated from the borromean nucleus by photon bombardment. We find a number of peaks at low photon energy in this cross section where each peak is located at the energy corresponding to population of a three-body resonance. Thus, for these energies the decay or capture processes proceed through these resonances. However, the next step in the dissociation process still has the option of following several paths, that is either sequential decay by emission of one proton at a time with an intermediate two-body resonance as stepping stone, or direct decay into the continuum of both protons simultaneously. The astrophysical reaction rate is obtained by folding of the cross section as function of energy with the occupation probability for a Maxwell-Boltzmann temperature distribution. The reaction rate is then a function of temperature, and of course depending on the underlying three-body bound state and resonance structures. We show that a very simple formula at low temperature reproduces the elaborate numerically computed reaction rate.Comment: 4 pages, 3 figures, conference proceedings, publishe
    corecore