24,583 research outputs found
Anatomy of three-body decay II. Decay mechanism and resonance structure
We use the hyperspherical adiabatic expansion method to discuss the the two
mechanisms of sequential and direct three-body decay. Both short-range and
Coulomb interactions are included. Resonances are assumed initially populated
by a process independent of the subsequent decay. The lowest adiabatic
potentials describe the resonances rather accurately at distances smaller than
the outer turning point of the confining barrier. We illustrate with realistic
examples of nuclei from neutron (He) and proton (Ne) driplines as
well as excited states of beta-stable nuclei (C).Comment: To be published in Nuclear Physics
Ammonia emissions from deciduous forest after leaf fall
The understanding of biochemical feedback mechanisms in the climate system is lacking knowledge in relation to bi-directional ammonia (NH3) exchange between natural ecosystems and the atmosphere. We therefore study the atmospheric NH3 fluxes during a 25-day period during autumn 2010 (21 October to 15 November) for the Danish beech forest Lille Bøgeskov to address the hypothesis that NH3 emissions occur from deciduous forests in relation to leaf fall. This is accomplished by using observations of vegetation status, NH3 fluxes and model calculations. Vegetation status was observed using plant area index (PAI) and leaf area index (LAI). NH3 fluxes were measured using the relaxed eddy accumulation (REA) method. The REA-based NH3 concentrations were compared to NH3 denuder measurements. Model calculations of the atmospheric NH3 concentration were obtained with the Danish Ammonia MOdelling System (DAMOS). The relative contribution from the forest components to the atmospheric NH3 flux was assessed using a simple two-layer bi-directional canopy compensation point model. A total of 57.7% of the fluxes measured showed emission and 19.5% showed deposition. A clear tendency of the flux going from deposition of −0.25 ± 0.30 μg NH3-N m−2 s−1 to emission of up to 0.67 ± 0.28 μg NH3-N m−2 s−1 throughout the measurement period was found. In the leaf fall period (23 October to 8 November), an increase in the atmospheric NH3 concentrations was related to the increasing forest NH3 flux. Following leaf fall, the magnitude and temporal structure of the measured NH3 emission fluxes could be adequately reproduced with the bi-directional resistance model; it suggested the forest ground layer (soil and litter) to be the main contributing component to the NH3 emissions. The modelled concentration from DAMOS fits well the measured concentrations before leaf fall, but during and after leaf fall, the modelled concentrations are too low. The results indicate that the missing contribution to atmospheric NH3 concentration from vegetative surfaces related to leaf fall are of a relatively large magnitude. We therefore conclude that emissions from deciduous forests are important to include in model calculations of atmospheric NH3 for forest ecosystems. Finally, diurnal variations in the measured NH3 concentrations were related to meteorological conditions, forest phenology and the spatial distribution of local anthropogenic NH3 sources. This suggests that an accurate description of ammonia fluxes over forest ecosystems requires a dynamic description of atmospheric and vegetation processes
Scattering into Cones and Flux across Surfaces in Quantum Mechanics: a Pathwise Probabilistic Approach
We show how the scattering-into-cones and flux-across-surfaces theorems in
Quantum Mechanics have very intuitive pathwise probabilistic versions based on
some results by Carlen about large time behaviour of paths of Nelson
diffusions. The quantum mechanical results can be then recovered by taking
expectations in our pathwise statements.Comment: To appear in Journal of Mathematical Physic
Rapid invisible frequency tagging reveals nonlinear integration of auditory and visual information
During communication in real-life settings, the brain integrates information from auditory and visual modalities to form a unified percept of our environment. In the current magnetoencephalography (MEG) study, we used rapid invisible frequency tagging (RIFT) to generate steady-state evoked fields and investigated the integration of audiovisual information in a semantic context. We presented participants with videos of an actress uttering action verbs (auditory; tagged at 61 Hz) accompanied by a gesture (visual; tagged at 68 Hz, using a projector with a 1440 Hz refresh rate). Integration ease was manipulated by auditory factors (clear/degraded speech) and visual factors (congruent/incongruent gesture). We identified MEG spectral peaks at the individual (61/68 Hz) tagging frequencies. We furthermore observed a peak at the intermodulation frequency of the auditory and visually tagged signals (fvisual – fauditory = 7 Hz), specifically when integration was easiest (i.e., when speech was clear and accompanied by a congruent gesture). This intermodulation peak is a signature of nonlinear audiovisual integration, and was strongest in left inferior frontal gyrus and left temporal regions; areas known to be involved in speech-gesture integration. The enhanced power at the intermodulation frequency thus reflects the ease of integration and demonstrates that speech-gesture information interacts in higher-order language areas. Furthermore, we provide a proof-of-principle of the use of RIFT to study the integration of audiovisual stimuli, in relation to, for instance, semantic context
Decay of low-lying 12C resonances within a 3alpha cluster model
We compute energy distributions of three -particles emerging from the
decay of C resonances by means of the hyperspherical adiabatic expansion
method combined with complex scaling. The large distance continuum properties
of the wave functions are crucial and must be accurately calculated. The
substantial changes from small to large distances determine the decay
mechanisms. We illustrate by computing the energy distributions from decays of
the and -resonances in C. These states are dominated by
direct and sequential decays into the three-body continuum respectively.Comment: 5 pages, 3 figures. Proceedings of the Clusters '07 conference held
in Stratford-upon-Avon in September 200
Layer Features of the Lattice Gas Model for Self-Organized Criticality
A layer-by-layer description of the asymmetric lattice gas model for
1/f-noise suggested by Jensen [Phys. Rev. Lett. 64, 3103 (1990)] is presented.
The power spectra of the lattice layers in the direction perpendicular to the
particle flux is studied in order to understand how the white noise at the
input boundary evolves, on the average, into 1/f-noise for the system. The
effects of high boundary drive and uniform driving force on the power spectrum
of the total number of diffusing particles are considered. In the case of
nearest-neighbor particle interactions, high statistics simulation results show
that the power spectra of single lattice layers are characterized by different
exponents such that as one approaches the outer
boundary.Comment: LaTeX, figures upon reques
Structure and decay at rapid proton capture waiting points
We investigate the region of the nuclear chart around from a
three-body perspective, where we compute reaction rates for the radiative
capture of two protons. One key quantity is here the photon dissociation cross
section for the inverse process where two protons are liberated from the
borromean nucleus by photon bombardment. We find a number of peaks at low
photon energy in this cross section where each peak is located at the energy
corresponding to population of a three-body resonance. Thus, for these energies
the decay or capture processes proceed through these resonances. However, the
next step in the dissociation process still has the option of following several
paths, that is either sequential decay by emission of one proton at a time with
an intermediate two-body resonance as stepping stone, or direct decay into the
continuum of both protons simultaneously. The astrophysical reaction rate is
obtained by folding of the cross section as function of energy with the
occupation probability for a Maxwell-Boltzmann temperature distribution. The
reaction rate is then a function of temperature, and of course depending on the
underlying three-body bound state and resonance structures. We show that a very
simple formula at low temperature reproduces the elaborate numerically computed
reaction rate.Comment: 4 pages, 3 figures, conference proceedings, publishe
- …