We investigate the region of the nuclear chart around A≃70 from a
three-body perspective, where we compute reaction rates for the radiative
capture of two protons. One key quantity is here the photon dissociation cross
section for the inverse process where two protons are liberated from the
borromean nucleus by photon bombardment. We find a number of peaks at low
photon energy in this cross section where each peak is located at the energy
corresponding to population of a three-body resonance. Thus, for these energies
the decay or capture processes proceed through these resonances. However, the
next step in the dissociation process still has the option of following several
paths, that is either sequential decay by emission of one proton at a time with
an intermediate two-body resonance as stepping stone, or direct decay into the
continuum of both protons simultaneously. The astrophysical reaction rate is
obtained by folding of the cross section as function of energy with the
occupation probability for a Maxwell-Boltzmann temperature distribution. The
reaction rate is then a function of temperature, and of course depending on the
underlying three-body bound state and resonance structures. We show that a very
simple formula at low temperature reproduces the elaborate numerically computed
reaction rate.Comment: 4 pages, 3 figures, conference proceedings, publishe