
J .  Fluid Mech. (1989), vol. 206, pp .  339-374 
Printed in  areat Britain 

339 

The existence of steady flow in a collapsed tube 
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Self-excited oscillations arise during flow through a pressurized segment of collapsible 
tube, for a range of values of the time-independent controlling pressures. They come 
about either because there is an (unstable) steady flow corresponding to these 
pressures, or because no steady flow exists. We investigate the existence of steady 
flow in a one-dimensional collapsible-tube model, which takes account of both 
longitudinal tension and jet energy loss E downstream of the narrowest point. For 
a given tube, the governing parameters are flow-rate Q,  and transmural pressure P 
a t  the downstream end of the collapsible segment. If E = 0, there exists a range of 
(Q,  P)-values for which no solutions exist ; when E + 0 a solution is always found. For 
the case E =I= 0, predictions are made of pressure drop along the collapsible tube; 
these solutions are compared with experiment. 

1. Introduction 
Elastic tubes can collapse if the external pressure is high enough compared with 

the internal, and when a tube is collapsing it becomes so compliant that hydro- 
dynamic pressure changes associated with flow through it can be large enough to 
influence the collapse process strongly. Such coupling of fluid flow through an elastic 
tube with collapse of the tube arises in a number of physiological and mechanical 
contexts (Shapiro 1977 a). Laboratory experiments designed to examine the detailed 
mechanics or steady behaviour of slowly varying flow through finite lengths of 
collapsible tube, supported at each end (figure i),  are almost invariably complicated 
by the development of self-excited oscillations in cross-sectional area, outflow rate 
and pressure drop, and the investigation of such oscillations has led to a variety of 
different theoretical models and assertions concerning the physical mechanisms 
involved (see Cancelli & Pedley 1985 for a brief survey and a long, but by no means 
complete, list of pertinent references). One difficulty is that there are several possible 
mechanisms, any one, or more than one, of which may be important in a given 
experiment, and very few of the early experimentalists recorded enough of the 
relevant quantitative details for a critical test of any particular model to be made. 
In the last few years, however, a new series of very careful experiments has been 
performed by Bertram (1982, 1986, 1987) who, with all the different models in mind, 
has endeavoured to measure every one of the potentially relevant parameters. 
Furthermore, in the course of these experiments, he has discovered a wide variety of 
oscillatory behaviour in a fairly limited region of parameter space, and has been able 
to map out many of the transitions between them (see Bertram, Raymond & Pedley 
1989). This suggests that the finite, externally pressurized collapsible tube with fluid 
flow through it should be thought of as a dynamical system with a rich bifurcation 
structure, and provides a strong incentive to develop a good theoretical description 
of it. 
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FIGURE 1. Conventional laboratory apparatus: an elastic tube is mounted a t  each end on two 
rigid tubes and contained in a pressurised chamber; k, and k, represent flow resistances. 

Most previous models have been either lumped-parameter models, in which the 
geometry of the collapsible segment is represented by one or more time-dependent 
variables such as the cross-sectional area a t  the narrowest point, and the rigid parts 
of the system up- and downstream of the collapsible segment control both the 
existence and the form of the oscillations (e.g. Bertram & Pedley 1982), or 
distributed, one-dimensional models in which the fact that the elastic tube can 
support propagating pressure waves is paramount, but the up- and downstream 
parts of the system are often ignored (e.g. Oates 1975). Lumped-parameter models 
are described by systems of nonlinear ordinary differential equations, but the 
distributed model requires a partial differential equation, hyperbolic in the simplest 
version. Experimental evidence suggests that unsteady behaviour sets in when the 
flow becomes critical, i.e. when the fluid speed becomes equal to the propagation 
speed of long waves somewhere in the tube (Brower & Scholten 1975; Bonis & 
Ribreau 1978), which implies that  a lumped-parameter model cannot be adequate. 
On the other hand, the oscillations are affected by changes in the resistance of the 
system downstream, for example (Conrad 1969), so the collapsible tube cannot be 
considered in isolation. Cancelli & Pedley (1985) proposed a hybrid model, of a finite 
length of collapsible tube mounted on rigid tubes at each end, but using the full one- 
dimensional equations in the collapsible segment. A novel aspect of the model was 
the incorporation of two features previously identified as important but not 
commonly included: longitudinal tension in the tube wall, and energy loss in the 
separated flow downstream of the narrowest point. Indeed, these authors identified 
hysteresis in the unsteady separation process as an important factor in the 
development of oscillations. 

All the results of Cancelli & Pedley (1985) were obtained numerically, and a not 
very wide region of parameter space was studied. The desire to understand the 
collapsible tube as a dynamical system demands a more mathematical treatment. In 
this paper we make a start by analysing steady solutions of the model equations used 
by Cancelli & Pedley (with a slight further simplification - see @2.2 and 2.3), 
covering the whole of parameter space. These steady solutions are fixed points in the 
space of solutions to the full, time-dependent problem. At a given point in parameter 
space, unsteady behaviour can arise in one of two ways: (a) if no steady solution 
exists, and ( 6 )  if an existing steady solution is unstable. Here we shall concentrate 
exclusively on (a) .  

Our analysis closely follows the approach used by Reyn (1987), who also examined 
the existence and uniqueness of steady flow through finite lengths of collapsible tube 
held open at the ends. He, too, incorporated longitudinal tension into his model, but 
he totally neglected all (viscous) energy loss in the system, while we include the jet 
loss downstream of the narrowest point. Also Reyn’s description of the elastic 
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properties of the tube was much more complicated than that used here, so his analysis 
was inevitably more cumbersome. The equations of our model are presented in $2, 
and in $ 3 we analyse the loss-free case, and we show that the simplification in elastic 
properties makes no qualitative difference to Reyn's results. In  $4 the complete 
model is solved, and the presence of energy loss is shown to have important 
qualitative effects ; in particular, there exists a t  least one steady solution at  all points 
of parameter space a t  which the tube is collapsed (i.e. with minimum area less than 
that of the up- and downstream rigid tubes), whereas there are regions in which no 
solution exists when energy losses are zero. Finally, in 95, we attempt a quantitative 
comparison of the theoretical predictions, in the form of graphs of pressure drop 
along the collapsible segment against flow rate, with three different sets of 
experiments: those of Conrad (1969), Bonis & Ribreau (1978, 1981) and Bertram 
(1986, 1987). That pressure drop is of course zero in the loss-free case. 

2. The model 
The steady one-dimensional model developed below is based on that developed by 

Cancelli & Pedley (1985). The quantities 2 (tube cross-sectional area), ti (cross- 
sectionally averaged fluid velocity) and j3 (internal pressure) are taken to be time- 
independent functions of the longitudinal coordinate Z. It is assumed that there are 
no transverse variations in u or fi, (which is more accurate for the time mean of 
turbulent flow than for laminar flow), except where flow separation takes place. The 
fluid is assumed incompressible, and has density p. 

2.1. Flow equations 
Since mass is conserved, the volume flux 

& = &  (2.1) 
is independent of Z. 

The form of the equation of motion will depend on the mechanisms of energy loss. 
There are two such mechanisms in the flow through a collapsible tube, arising either 
from frictional forces between the fluid and the tube wall or from viscous dissipation 
in the region of separated flow downstream of a constriction in the tube. As Cancelli 
& Pedley noted, the effect of friction is generally negligible in comparison to that of 
flow separation (the exceptional cases are when the tube is severely constricted along 
its entire length or when it is dilated along its length and no separation occurs), and 
we shall therefore neglect friction in our model. 

As a increases beyond a constriction in the tube, fluid velocity must decrease and 
so there is a rise in pressure. This adverse pressure gradient, if it is sufficiently large, 
leads to boundary-layer separation from the tube wall. At high flow rates a turbulent 
jet is formed and the flow may remain separated as far as the downstream end of the 
collapsed tube. I n  a case where there is no separation, there will be no energy 
dissipation and the equation of motion downstream of the constriction will be the 
same as that upstream, i.e. 

titi- = - -p" 

If, when there is separation, the jet remains parallel-sided there will be no pressure 
recovery as the mean velocity decreases, so the equation of motion becomes 

(2.2) 
1 -  

X' x P  

j32 = 0. (2.3) 
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Downstream of a constriction in practice there is a widening of the jet accompanied 
by some pressure recovery. This suggests that the equation can be written in the 
form 

(2.4) 
1 -  = --p- 

2, 
x P  

where 0 < x < 1. We follow Cancelli & Pedley (1985) in taking x to be a constant 
(compare the Borda-Carnot condition for overall pressure recovery downstream of 
an orifice, equivalent to x = 0.18 for a 90% constriction) ; the precise value of x turns 
o u t  to  be unimportant. The point of separation should be determined as the place 
where the adverse pressure gradient exceeds a positive critical value, a little way 
downstream of the point where the cross-sectional area is smallest. For convenience 
we assume that separation occurs at the point of smallest area, consistent with the 
model of Smith & Duck (1980) for internal separated flow a t  large Reynolds number. 
Thus the equation of motion is taken to  be (2.2) (i.e. (2.4) with x = 1) upstream of 
t,he narrowest point, and downstream of it when there is no separation, and (2.4) with 
0 < x < 1 downstream when there is separation. 

2.2. The tube law 

The tube law is a relationship between transmural pressure and the local cross- 
sectional area. In  the absence of longitudinal tension or bending it is taken to be of 
the form 

where @, is the external pressure and 

P ( K )  = K ,  P(a) ; 

(2.5) 

K ,  is a constant proportional to the circumferential bending stiffness of the tube wall 
(Shapiro 19776). With A. the unstretched (circular) area and k a constant, the 
following modified similarity law is used (again following Shapiro 1977 b)  : 

1 -ad for a = K/A:, < 1 { k(a-1) f o r a - K / A , > l ;  (2.7) 
P(a)  = 

see figure 2. The speed c" of propagation of small-amplitude waves when there is no 
mean flow is given by 

(2.8) 
A -  

2 = -p l (K) .  
P 

2.3. Longitudinal tension 
Local collapse of the tube is accompanied by longitudinal as well as transverse 
bending of the wall. If the tube is stretched longitudinally, as in most of the 
experiments, then the longitudinal tension will oppose this bending and will 
contribute to the transmural pressure. Following McClurken et al. (1981), we 
recognize that the cross-section of the tube is very flattened when it is collapsed, and 
therefore approximate the tube as a pair of two-dimensional membranes whose 
spacing is proportional to the local cross-sectional area. The tube law is accordingly 
modified as - -  T 

F - F e  = P(A)- - - ,  R (2.9) 

where 5" is the longitudinal tension per unit perimeter and R is the longitudinal radius 
of curvature. The expression for R used by Cancelli & Pedley (1985) contains 



The existence of steady flow i n  a collapsed tube 

.Y(a) 

343 

FIGURE 2. The tube law : non-dimensionalized transmural pressure is plotted against the non- 
dimensionalized cross-sectional area a of a uniform elastic tube at zero longitudinal tension ; the 
shape of the cross-section is shown for varying a. 

nonlinear terms which we neglect on the assumption that the tube area varies slowly 
with 2, i.e. that 

D o 4  4 1, (2.10) 
A", 

where Do is the diameter of the unstretched tube, so in this paper we take 

(2.11) 

The assumption will be inaccurate where there is a large change in tube area over a 
short axial distance, for example when the constriction is very close to the junction 
with the downstream rigid tube. It is hoped, however, that the influence of this term 
is much less important than that of those nonlinearities included in the analysis. 
Reyn (1987) used a more accurate description of tube wall elasticity, which added 
considerable complication to the mathematical analysis, but did not lead to 
qualitative differences in the results. 

McClurken et al. (1981) also discussed the effect of longitudinal bending stiffness on 
transmural pressure, but concluded that tension normally plays a more significant 
role. We therefore neglect the bending stiffness ; we assume also that any variations 
in T with Z may be neglected: this is reasonable provided changes in T with Z, 
brought about by longitudinal skin friction for example, are much smaller than T 
itself; this is consistent with the neglect of friction. 

2.4. Boundary conditions 
There are four boundary conditions to be applied to the fourth-order system formed 
by the above equations. D = 0 and 2 = L are the positions of the junctions of the 
segment of collapsible tube and the rigid tubes up- and downstream. Each rigid tube 
is assumed to  have cross-sectional area A",. Then two of the boundary conditions are 

L(0) = K(L) = A",, (2.12) 
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and tho other two specify the upstream and downstream pressures : 
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fj(0) = fj R -1 2P a2 ( 0 1 - k  1 A-2 ou -2 ( O h  (2.13) 

@(L) = kZAit&2(L), (2.14) 

where k, and k ,  are constants representing the properties of the constrictive valves 
upstream and downstream respectively. The downstream rigid tube is open to the 
atmosphere, and so (2.14) represents the pressure drop across the downstream 
constrictive valve (see figure 1). Far upstream, water flows from a static reservoir a t  
pressure j3, into a rigid tube, down which there is a pressure drop due to the gain in 
momentum of the fluid and a further drop across the upstream valve, so that p(0)  is 
given by (2.13). 

2.5. Non-dimensionulizution 
The following scales are used for non-dimensionalization : area A”, ; pressure K ,  and 
velocity co = (K,/p)i. The appropriate lengthscale for longitudinal variation turns 
out to be 

(2.15) 

where 5? is the total longitudinal tension in the tube ( =  n D o T ) ;  (L”/Do)z is 
proportional to the ratio of longitudinal stress to hoop stress in the tube when it is 
beginning to collapse, or equivalently to the longitudinal radius of curvature divided 
by the diameter, and ought to be large for the one-dimensional-flow assumption to 
be accurate. Let x = i?:/L“, a = A”/A”,, p = fj/K,, and u = t&/co. Equation (2.8) for the 
wave speed F of long waves becomes c2 = a Y ( a ) ,  but it should be remembered that 
longitudinal tension makes the system dispersive, so that there is no unique wave 
propagation speed. 

The governing equations become 

(u@, = 0, (2.16) 

xuu, = - p  2 ,  (2.17) 

P-P, = 9 ( a )  -;axx> (2.18) 

where x = 1 when the flow is attached. With A = L/L“, and ql,z = k , , z B i / p ,  the 
boundary conditions are 

a(0) = a(A) = 1,  (2.19) 

(2.20) 

(2.21) 

2.6. Parameter values 

We would like to compare the results of this theory with experimental findings. 
Unfortunately, few experimentalists have recorded details of all the relevant 
parameters of their collapsible tube system, so it is not possible to give quantitative 
comparisons with many of the observations of the breakdown of steady flow. Like 
Cancelli & Pedley (1985), therefore, we limit our comparison to  three experiments : 
Conrad (1969), Bonis & Ribreau (1978) and Bertram (1986) (see also Bertram 1987 
and Bertram et al. 1989). 

Bertram (1986, 1987) used a long, thick-walled tube, and the dimensional 
parameters took the following values: Do = 12.7, 17.5 or 19.1 mm; wall thickness 
h = 2 . 4 m m ; L  =230mm;K,= 11.90r27.15 k P a ; t o t a l p =  3.1,22.7or42.3N,soT 
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ranged from 52 to 1060 N m-l. Thus the range of values of lengthscale 1 was 6.0 to 
33.6 mm and the dimensionless length h varied between 6.84 and 38.2. Other non- 
dimensional quantities are taken to  be k = 45 (measured from Bertram’s tube-law 
graph for the 12.7 mm diameter tube - this value is close to the value k = 1 .5(~!I , /h)~ 
deduced from linear elasticity theory), and q2 = 0.014 to  25.2, y1 = 0.007 (from data 
in Bertram 1986, Bertram et al. 1989). We note that z/D, was not large, varying 
between 0.32 and 2.65, which is likely to limit the quantitative agreement with his 
experiments ; other limitations arise from the use of a ‘ thin-membrane ’ model for the 
elastic behaviour of a thick-walled tube, and from the neglect of friction in such a 
long tube. 

Bonis & Ribreau (1978) used a not quite circular tube of average diameter 
Do = 12 mm, length L = 0.5 m, wall thickness h = 0.31 mm and Young’s modulus 
E = 1.19 MPa, giving K ,  [ = E(2h/D0)3/12(l -r?) where v z 0.5 is the Poisson’s 
ratio] = 18.1 Pa and k w 2250. The authors did not record longitudinal tension, but 
assuming a longitudinal strain Z of 12% (Bonis & Ribreau 1981), and using linear 
theory (T = ZEh) gives fl! = 1.67 N and hence 1 = 0.17 m. Thus L”/Do is quite large 
in this case, a consequence of the thin wall of the tube which makes K ,  much smaller 
than in Bertram’s experiment, and the dimensionless length h = 2.9. These authors 
do not record the upstream or downstream resistance. 

Conrad (1969) also used a thin-walled tube, of rather a short length ; the parameter 
values quoted in his paper were Do = 12.7 mm, L = 89 mm, h = 0.93 mm, 
E = 0.16 MPa, giving K ,  = 55.8 Pa, k = 2.80. He gave no information about 
longitudinal tension or extension. Assuming Z = 0.2 gives = 1.2 N, 2 = 82 mm, 
and hence A = 1.1.  This gives z / D o  = 6.5, which is not large enough for us to expect 
very good quantitative agreement between theory and experiment. Conrad records 
downstream resistance, giving y2 = 109 to  8710, but not upstream. I n  a personal 
communication in 1981, Conrad reported that the quoted value of h was a misprint 
for 0.093 mm, in which case K ,  would be a factor of lo3 smaller, k a factor lo2 greater, 
L” a factor of 10 larger and hence h = 0.1 1 .  Both sets of parameter values are used in 
5 5.3 below. 

Thus, in making comparisons with experiment we need to consider values of h 
between 0.1 and 40. In each case we also arbitrarily consider both x = 0.2 and 
x = 0.5. 

3. Fully attached flow 
In  this section we neglect all energy dissipation within the collapsible segment, to 

identify the conditions under which steady flows can exist. I n  a sense this merely 
repeats the analysis of Reyn (1987), but it is easier to interpret since the tube 
elasticity relation is much less complicated. 

In non-dimensional variables, the mass and momentum conservation equations are 

These can both be integrated with respect to x: 

Q = ua, (3.3) 

H = $2 +p, (3.4) 
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where Q ,  the dimensioniess flow rate, and H are constants. From (2.18) 
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where 
P = Pe+@'(a)-iaz,, 

1-a-i f o r a <  1 
k ( a - 1 )  fora > 1. 

9 ( a )  = 

The boundary conditions are 
a(0) = a ( A )  = 1, 

Using (3.3) and (3.4), it  is clear from (3.7) that p ,  = p 2 ;  with no dissipative terms in 
the governing equations we expect no pressure drop along the collapsible segment. 
It then follows that 

PR = (a+ 71 72) Q2. (3.10) 

Defining another constant P ,  given by 

p = Pe-P,, (3.11) 

we substitute (3.3) and (3.5) into (3.4), and using the downstream boundary 
condition (3.9) to eliminate H this gives the following second-order differential 
equation for a 

ia,, = P + i Q 2  ?- 1 +@(a). (3.12) (a' 1 
(:2 ) f ( Q 2 ; a )  = iQz --1 + 9 ( a ) ;  (3.13) We define 

f has a minimum in 0 < a < 1 provided 

QQ2 < 1.  (3.14) 

Since c2 = a9 ' (a)  = ga-i for 0 < a < 1,  this means that the flow speed entering (or 
leaving) the tube is subcritical: u / c  < 1 when a = 1. The minimum value is 

fmin = f ( Q 2 ;  (@2)2) = -[8Q2++(5Q2)-'- 11 

= -Pt(Q), (3.15) 

say. f ( a )  is monotonic decreasing in 0 < a < 1 for supercritical entry flow, and is 
monotonic increasing in a > 1 provided Q2 < k. There is a second minimum a t  
a = ( Q 2 / k ) i  if Q2 > k ,  where f takes the value 

= -PX(Q), (3.16) 

We can examine the trajectories in the (a, ax)-phase plane of the solutions of (3.12). 

x = Y .  I 

say. Figure 3 shows some graphs of f ;  Ft(Q) and Ft(Q)  are shown on figure 4. 

Let X = a,  Y = a,. Then 

+Y = P + f ( Q 2 ; X ) ,  

where a dot denotes differentiation with respect to x. 

(3.17) 
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FIQURE 3. The function f(Q* ; a) plotted against a for three va!ues of the parameter Q : 

(a) 0 < Q < (3/2):; (b)  (3/2)f < Q < d; ( e )  k3 < Q.  

The system possesses singular points a t  Y = 0 and at values of X such that 
f ( Q z  ; X) = - P .  We thus see from figure 3 that there are either no singular points, when 
- P  is less than fdn, or two when -P > fmin (or one, when either -P = fmin or 
Q = 0). When there are two singular points, the one with the lower value of X is a 
centre Xc(Q,P) (since f'(X) < 0) and the other is a saddle point X,(Q,P).  The 
functions X,(Q,  P )  and X c ( Q ,  P )  are plotted as functions of P for three representative 
values of Q in figure 5.  Typical phase planes are shown in figure 6 ;  a complete, 
detailed discussion is given below. 

Whenever the parameters (Q, P) take values for which X, and X, exist, we may 
define As(&, P )  as the point of intersection of the saddle-point trajectory and the 
X-axis, satisfying 0 c A ,  < X, (see, for example, figure 6ai). A,  is given by 

r ' Y d X = O ,  (3.18) 
J As 

and its dependence on Q and P is demonstrated in figure 5 .  
12 F L M  206 
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-4  -1/ Q 
(4 

L 

F I G ~ R E  4. (&,PI paramete: space, divided into regions (a ) ,  ( b ) ,  ( c )  and ( d )  by the curves 
P = Pt(&), P = P*(&), P = P"(&) and P = 0. (k = 45 was used in calculating these curves.) 

Consider the trajectory in figure 6(c)(i) which passes from 1 to 2 to 3. It 
corresponds to a solution (shown in figure 7a) for a tube which is collapsed at  its 
mid-point, where the cross-sectional area takes an extremum value A .  Likewise a 
distended tube, such as that in figure 7 ( b ) ,  is represented by the trajectory numbered 
1, 2, 3 in figure 6(e)(i). (3, 4, 1 ,  represents a collapsed tube.) It is convenient to 
associate particular solutions for given Q, P with the corresponding values of A .  

Multiplying (3.12) by a, and integrating with respect to x gives: 

$Ol", = g(a) + constant, (3.19) 

where 
1 

g(a) = P ( a - l ) + p  ( 2--- a a ) + p W d a .  

A t  a = A ,  a, = 0, so 
+a: = g(a) - - (A) .  

(3.20) 

(3.21) 

A necessary condition for the existence of a solution is g(a)-g(A) 2 0 for all a 
1 ,  1 1 1 1  A ..... .. - - - I -  . A T I  A 4 -..- .____. J-c-- Detween I ana me exwemum value A. 11 II K I, we rriay ueiiiie 

T l A - 0  P\ = r dor. 
\ - - - - J  

J A  [g(a)-g(A)P' 
1 \ * ' , ' 95 , '  I - 

if A > 1, I is simply defined with the limits of integration reversed. Thus for a 
collapsed tube, !$ corresponds to integrating the inverse square root of (3.21) along 
a trajectory from point 2 in figure 6(c) (i) ( X  = A )  to point 3 (X = 1) which, by 
cmTmmetrx7 nnrrnannnda tn intewratinw alnnu hal f  the  lencrth nf the  tnhe We t,hprpfnrp 

have 
h = I ( A ; Q , P ) .  (3.23) 

The independent governing parameters of the problem are Q and P. (Q, P)-space 
is divided naturally into four regions, as shown on figure 4; figures 6(a)-6(e) show the 
corresponding types of behaviour. 
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x, 
............................................................... I 
(4 

I I 
-3  -2 - 1  0 

P 

O I I I I I  

-6 -4 -2 0 2 4 BB(Q)6 &Q) 
P 

FIGURE 5. The functions X,(&,P), X,(Q,?) and A,($?,P) plotFd ageinst P for three values of &: 
(a) 0 < Q < (3/2)5; (b )  (3/2)3 < & < b;  ( c )  ks < &. 

(a) 0 < &, P < 0 
Whenever P < 0, we see from figure 5 that the phase plane contains two singular 
points, a centre X, (Q,  P )  with X ,  < 1 and a saddle point X, (Q,  P )  with X ,  > 1 ; such 
a phase plane is shown in figure 6(a)(i). Trajectories inside the closed, dotted loop 
(which passes through ( A l ,  0) and ( 1 , O ) )  do not correspond to possible solutions since 
X $: 1 on them. Thus solutions for which the tube is collapsed are possible only for 
A < A , ;  solutions in which the tube is distended are possible for 1 < A < X,. 
Following Reyn (1987), in figure 6(a)  (ii) we also plot the values of I ,  that is to say, 
dimensionless tube length h corresponding to the different permitted values of A .  
(We also use his notation to label trajectories which cross X = 1 when Y > 0 (U) and 

12-2 
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FIQURE 6(u)(i,ii),(b) (i,ii), (c)(i,ii), (d)(i,ii).  For caption see facing page. 
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FIGURE 6. (i) Trajectories in the @,a,) phase plane (X = a and Y = az), each a possible tube 
configuration with the flow fully attached. To represent a tube held open at both ends, they must 
cross a = 1 (dotted) twice, with a, < 0 (L) or a, > 0 (U). (ii) The corresponding graphs of I ( A ) ,  
which relate the change in the parameter x along a trajectory between intersections with a = 1, to 
the extremum area of the tube shape represented by that trajectory. Parameter values are as 
follows: (a) Q = 10, P = -5 (region a of figure 4) ;  (b) Q = 1, P = 0.1 (region b ) ;  ( c )  Q = 5 ,  P = 5 
(region c ) ;  (d )  Q = 10, P = 6 (region d ) ;  (e) Q = 10, P = 1 (also region d ) ;  k = 45 in all cases. 

X = 1 when Y < 0 (L), so that, for example, trajectory 1, 2, 3 in figure S(c)(i) is 
denoted LU, whereas trajectory 1, 2, 3 in figure 6(e)(i) is represented by UL.) 

As one might expect, whenever there is negative transmural pressure, solutions 
exist for all values of h with the tube distended (see the branch of figure 6(a)(ii) 
corresponding to UL trajectories). Interestingly, the solutions for A > 1 are not 
unique if h is sufficiently large (e.g. ULU and ULUL in figure 6aii): the model 
predicts that the tube may take up a configuration in which a has alternating 
extrema greater or less than 1 (the definition of I is here extended to allow repeated 
passage of a trajectory across the X-axis) ; such non-uniqueness was also found by 
Reyn (1987). (To ensure that the pressure and its gradient are continuous at points 
along the tube where 01 = 1, at which the tube law has discontinuous gradient, azz 
must be continuous but a,,, is discontinuous.) 

There are similar non-unique solutions with A < A , ,  as long as h is sufficiently 
large. More surprisingly, there is a collapsed solution with a < 1 everywhere (LU), as 
well as the expected distended one with a 2 1 everywhere, for sufficiently small A ; 
the flow corresponding to this collapsed state is highly suporcritical along most of the 
collapsed segment. This apparently anomalous solution no longer exists when 
allowance is made for energy loss (see $4 below). 
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FIQURE 7. Two typical tube shapes when the flow is fully attached: (a) the collapsed tube 
corresponds to the trajectory in (a,a,) phase space numbered 1, 2, 3 in figure S(c ) ( i ) ;  ( b )  the 
trajectory numbered 1, 2, 3 in figure 6 ( e ) ( i )  represents this swollen configuration. 

x 

(6 )  0 < Q < (3/2)4, 0 ,< P d @Q) 
For subcritical entry flow and low pressures figure 5 ( a )  shows us that we have 
0 < X, < (is2)," < X, < 1 ; the phase plane is as shown in figure 6 ( b )  (i) ,  Two solutions 
for a collapsed tube exist for all values of A, with different values of A : 0 < A < A ,  
and X ,  < A < 1. The two branches of I (see figure 6bii) are separated by a region 
which contains the point A = (tQ,"),". Now the speed index (the ratio of flow speed to 
the speed of propagation of pressure waves in the tube wall) is given by 

Thus solutions on the right-hand branch represent flow that is everywhere subcritical, 
while those on the left-hand branch correspond to flow that is subcritical on entry 
but supercritical a t  the constriction. When P = 0 this right-hand branch coincides 
with the vertical line X, = 1. A cylindrical-tube solution emerges in this case for 
all tube lengths. 

(c )  0 < Q < (3/2);, pt(Q) < P or (3/2); 6 Q < ki, 0 < P or ki < Q ,  PI(&) < P 
In  these cases the phase plane has no singular points (figure 6c i ) ;  I ( A )  is well 
defined for all A E [0,1], vanishes as A + 0 and has a fmite upper bound Ims(Q, P ) ,  as 
shown in figure 6(c) (ii). Thus for A > I,,, no solutions exist, while for 0 < A < Imax 
two solutions for a collapsed tube are possible. 
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FIGURE 8. The contours A = 4,,JQ, P )  and h = Z,,,(Q, P )  plotted for h = 1, k = 45. Each lies to the 
right of P = Pt(Q) and P = PB(&) respectively. For this tube length, there are no steady solutions 
with the flow fully attached for (Q ,P)  between these contours and P = 0. 

(d) k: < &, 0 < P < pt(Q) 
I n  this case both a saddle point X ,  and a centre X ,  exist in X 1, and thus A, 
also exists as shown in figure 5 ( c ) .  Note that A,  = 1 when P takes a value 
pB(&), say, where 0 < PE(&) < PI(&). When this is the case, we have (from (3.18)) 
g(X,)-g(1) = 0, and from our definition of g (3.20) we have g ( l )  = 0; further, since 
f (X , )  = 0, g'(X,) = 0. Thus g(X,)  = 0 has a double root which is not equal to 1, and 
from this we deduce that X ,  = &/kt  and 

PB(&) = t (&-k;) ' .  (3.25) 

FB(Q) divides this region of parameter space as shown on figure 4. If 
PB(&) < P 6 Fx(&), the saddle-point trajectory lies entirely in X > 1 and I ( A )  is of 
the same form as in case (c) (see figures 6di and ii). For 0 < P < PB(&) ,  we 
have A ,  < 1 and phase planes such as that shown in figure 6 ( e )  (i). We may define R, 
analogously to A, ,  i.e. the trajectory through ( 1 , O )  passes through (B,, 0), where 
B, > 1 .  I ( A )  is as shown in figure 6 ( e )  (ii). In  addition to two LU solutions which exist 
for sufficiently short tubes ( A  < I,,,), further solutions arise provided h is sufficiently 
large, again characterized by alternate dilation and contraction down the length of 
the tube. Note in particular that  the curve representing a completely dilated tube 
(UL) has a minimum value, lmin, say, for some value of A in (Bl ,X,) ,  so that  for 

rmax < A < lmin (3.26) 
no solutions exist. 

Therefore for a tube of given dimensionless length A,  the contour 

= -I,,,(&, P) (3.27) 

separates the region of (&, P)-space for which solutions exist with the tube collapsed 
(a < 1 everywhere) from that in which they do not. Such a contour is shown in 
figure 8. Beneath the curve P = Pt(&) (shown dotted in the figure), there exist two 
collapsed solutions for all lengths of tube. The contour is to be found above and to 
the right of this curve. In addition, for (&,P) lying to the right of the contour 
h = -Imin, (also shown on figure 8), or for P < 0, a further class of solutions exists such 
that the tube may be completely dilated, or have alternating maxima and minima. 
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4. Separated flow 
In this discussion we shall determine how energy loss through flow separation 

affects the parameter values for which steady solutions exist, and we shall discuss the 
behaviour of these solutions. Since we are interested only in tubes that are constricted 
a t  some point, we shall henceforth assume that P > 0 (except a t  the end of $4.3). 

4.1. The governing equations 

Following the discussion of $2.1, the momentum equation for flow that separates 
downstream of a constriction is 

xuu, = -Px, (4.1) 

where x = 1 upstream of the separation point (x = X,) and x is a constant, 0 < x < 1, 
downstream of it. In  general the discontinuity in x causes a jump in the pressure 
gradient, as was the case in the calculations of Cancelli & Pedley (1985) who used the 
size of the adverse pressure gradient as the criterion determining the position of 
the separation point. However, since we are using a simplified criterion - that  the 
separation point is the point a t  which a takes its minimum area A ,  so that 
ax(X,) = u,(X,) = 0 - we in fact have a continuous pressure gradient a t  x = X,. As a 
result, a, a,, a,, and axxx are continuous across the separation point. 

Integration of the conservation equations (3.1) and (4.1) gives 

Q = ua for 0 < x < A, (4-2) 

$2 + p  = H I  (constant) for 0 < x < X,, (4.3) 

; x d + p  = H ,  (constant) for X ,  < x < A. (4.4) 

Using the boundary conditions 

a(0) = 1, a(h) = 1,  

P I  = P e - P ,  say, PZ = P e - P ,  

(4.2), (4.3) and (4.4) give 

(4.5a, b )  

(4.6a, b)  

+P(a) when 0 < x < X ,  
$a,, = 

Since ax, is continuous a t  x = X,, where a = A ,  

P ( A )  = P-i(l-X)&Z ,-1 , (1 1 
i.e. the pressure drop along the collapsible segment is 

As before solutions of (4.7) are best described by examining their trajectories in the 
( X ,  Y)-phase plane, where X = a and Y = a,. The separation point o fa  collapsed tube 
corresponds to the point X =  A ,  Y = O  (see figure 9 a ) .  The form of the tube 
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FIGURE 9. (a) A trajectory in (a, a,) phase space (X = a and Y = a,) representing a collapsed tube 
with separation occuring at (A,O) ,  the point of minimum area. The corresponding tube shape is 
shown in ( b ) .  Parameter values are Q = P = 5, k = 45 and x = 0.5. 

X 

downstream of this point is represented by the trajectory calculated by integration 
over x~ [X,, A] of 

x =  Y ,  
(4.10) 

(Note that we may here use the results of $3 but with Q2 replaced by x@.) To satisfy 
the downstream boundary condition (4 .5b) ,  the trajectory must cross X = 1 when 
x = A. Likewise, the upstream trajectory describing the tube for x e  [0, X,]  is obtained 
by integrating 

x =  Y ,  ( 4 . 1 1 ~ )  

$Y= P+@+1)+9(X) X (4.1 1 b)  

backwards from the separation point. Equation (4.5~) requires this trajectory to 
cross X = 1 when x = 0. Figure 9 ( b )  shows the actual shape of the tube corresponding 
to the trajectory in figure 9(a). 

From (4.8), we may re-express (4.llb) as follows: 

(4.12) 



356 0. E .  Jensen and T. J .  Pedley 

0.8 

0.6 

0.2 

0 
A 

FIGURE LO. ((I) Trajectories in the @,a,) phase plane representing tube shapes when the flow 
separates at the point of minimum area (along a, = 0), for x = 0.5, k = 45 and Q = P = 5 (in region e 
of figure 11) ;  downstream they are all governed by the same equation - this is not the case 
upstream. (6) A single trajectory which meets the X-axis with A, < A < K, representing a tube 
swollen at its upstream end and collapsed further downstream, denoted ULU. (c) The graph of Z(A) 
for these parameter values, relating tube length to minimum area. 

We see that the upstream trajectory is governed by equations identical to (4.10) 
except for an extra term 

- ( l -X)w(-&-+) .  (4.13) 

Because this term depends on A ,  different upstream trajectories will be governed by 
different equations, so it is likely that they may cross one another (even away from 
any singular points.) 
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We illustrate the effect of this term with an example. Take Q = 5.0, P = 5.0 and 
set x = 0.5 arbitrarily. Since xQ2 > $, the downstream trajectories have no singular 
points, as shown in the upper half-plane of figure lO(a). 

For X > A ,  the term (4.13) is negative and its effect is to bring the upstream 
trajectory which passes through (A,O) closer to the X-axis than its downstream 
counterpart. The influence of the term increases as X moves away from A and also 
as A decreases. Thus for A near 1, upstream and downstream trajectories are not 
qualitatively different ; as A decreases (e.g. see the dotted trajectory on figure 10a) 
the corresponding upstream trajectories bend closer to the X-axis ; the upstream 
trajectory passing through A (dashed on figure 10a) meets the X-axis at a saddle 
point a t  ( X ,  0), which for these values of Q and P happens to lie beyond X = 1 .  

As A decreases from A, the effect of (4.13) is progressively greater. Upstream 
trajectories form loops which become tighter as A becomes smaller. Figure 10 (a)  
shows the trajectory through A = A , ,  which passes through ( 1 , O ) .  If A < A, ,  then all 
upstream trajectories form loops which start and finish in 0 < X < 1, making it 
impossible to  satisfy the upstream boundary condition ( 4 . 5 ~ ) .  For A ,  < A < A, we 
can find trajectories such as the one shown in figure l O ( b ) .  Starting from X = 1, 
Y < 0, passing through X = A,  Y = 0 and returning to X = 1, Y > 0, i t  represents a 
collapsed tube held open at both ends (LU in Reyn's notation). In  addition, from a 
point on X = 1, Y > 0 we may follow a path ULU corresponding to a tube that is 
swollen just beyond x = 0 but that collapses before x = A ; there is assumed to be no 
flow separation at x = 0 so there is no energy loss in the distended region. 

Letting I (A  ; Q, P )  be the change in the parameter x down a trajectory representing 
a collapsed tube, we must again satisfy 

h = I(A ; &, P ) .  (4.14) 

For the parameter values of this example, I (A ; Q,  P )  is not defined for all A in [0, 11 ; 
it has the form shown in figure 10 ( c ) .  For A < A, ,  there are no trajectories that meet 
X = 1 twice, as required. I ts  branch representing a tube that is everywhere collapsed 
is bounded above b y l ( A , ) ,  so that for these parameter values there is no LU-solution 
for a tube of length greater than I ( A 1 ) .  However, the branch representing tubes that 
are partially swollen and partially collapsed (ULU) tends to infinity as A +X-. 

Explicitly, for a tube that is collapsed at some point along its length and held open 
a t  both ends I is of the following form: 

(4.15) I(A ; &, P )  = 11 +I , ,  

where 

and g,(a) = P ( a - 1 ) + t Q 2  2---a + B(a)da.  ( 3 s :  \ 
Again, the existence of I is conditional on 

gl(a)-gl(A) 2 0, g,(4-g,(A) z 0 

gz(a)-gg,(A) 2 g*W-gl(A) for all a in [ A ,  11 

for all 01 between 1 and the minimum A .  Note that 

(4.16) 

(4.17) 

(4.18) 

(4.19) 
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so that I ,  I, and therefore the separation point X ,  lies in the downstream half of 
the tube. As in $3, we may extend the definition of I to include situations in which 
the tube is dilated as well as collapsed a t  some point along its length. 

4.2. Properties of the phase plane 

We now determine some characteristics of the phase plane in various regions of 
(Q, P)-parameter space. The essential results will be summarized in the next 
section, $4.3. 

The downstream trajectories are easily dealt with. From the analogous results in 
$3  ((3.15) and (3.16)), we may define (for xQ2 < 2) 

and for xQ2 > k PYQ) = - f  (xQ2 ; E)) , 

(4.20) 

(4.21) 

where f is given by (3.13). P = Pt(Q) is the curve (shown on figure 11;) beneath 
which downstream trajectories have a saddle point S,, say, and a centre C, in 
0 < X < 1 (cf. figure 6bi). Above this curve, and to the left of P = Pt(Q) (shown 
in figure l l i i ) ,  there are no singular points in the upper half of the phase plane. 
For xQ2 > k and P <PI(&) ,  S, and C, both exist and are found in X > 1 (cf. 
figure 6d i). 

As mentioned at the start of this section, along a trajectory crossing a separation 
point (A,O) ,  a, = X and aXs = Y are continuous. Thus if an upstream and a 
downstream trajectory meet a t  a downstream singular point, this is also an upstream 
singular point. There are therefore only three types of upstream singularity 
corresponding to a downstream saddle point S, or centre C, (or to the degenerate 
singularity (CS), formed when S, and C, coalesce): a centre C,, a saddle S, or a 
degenerate singularity (CS),. Corresponding to  C, or (CS), we must always have C,, 
since (4.13) prevents any upstream trajectory from moving further away from the 
X-axis than its downstream counterpart. 

To determine which singularities correspond to S, for given (Q,  P ) ,  and also to 
ascertain whether upstream saddle-point trajectories such as that through (x, 0) in 
the example above exist or not, it is helpful to take the following approach. 

Upstream trajectories are governed by (4.11) with p ( A )  given by (4.8). For given 
( Q ,  P), let A take some fixed value. This defines a particular p ,  and (4.11) in turn 
defines an entire half-plane of upstream trajectories. (Only one of these trajectories - 
that through (A ,  0) - corresponds to a possible tube configuration for these values 
of Q and P.) 

If F ( A )  is sufficiently large for there to be no singular points on this phase plane, 
then we can be sure the trajectory through (A,O) will be non-singular. However, if 
we have (say) Q < (3/2): and < Pt(Q) (defined as in (3.15)), then a centre a t  
(Xc(Q,  p ) ,  0 )  and a saddle point a t  (X,(Q, p ) ,  0 )  are to be found in this phase plane (see 
for example figure 6bi) ; likewise the saddle-point trajectory through ( A s ( Q , p ) ,  0 )  
will exist. The values of A,, X, and X ,  may be determined from figure 5 ( a ) ,  replacing 
P with p .  We may then determine the nature of the trajectory T through (A, 0 )  in 
the ( X ,  Y)-phase plane by examining the relationship between A and A , ( Q , p ( A ) ) ,  
X , ( Q , p ( A ) )  and X,(Q,  p ( A ) ) .  Figure 12 shows some possible forms of T. (Note that 
when X ,  < A < X,,  the case shown in figure 12(c), there exist no upstream 
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Q Q 
FIQURE 11. (&,P)  parameter space divided into sections in which the corresponding (a, a,) phase 
plane has different characteristics: (i) divided into regions (a*) by the curves P = PA(&), 
P =PO(&), P = Pt(&); (ii) divided into regions (e-h) by P = pB(&), P = Pf(&)  and P = Pc(&). 
x = 0.5, k = 45. 

FIGURE 12. (ad) .  Schematic diagrams showing how the nature of an upstream trajectory T is 
dependent on the relationship between A ,  the value of a when it meets the X-axis, and A,, X ,  (the 
position of a centre) and X, (a saddle point). 
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FIGURE 13. The function P ( A )  plotted against A for Q = P = 1, 1y = 0.5. 

trajectories representing a narrowing tube.) I n  addition to these, if X,(Q, &I)) = A 
or X,(&,F(A)) = A then T will be a centre C, or a saddle Xu, and if 

A = A,(&, W ) )  (4.22) 

then T is an upstream saddle-point trajectory on the ( X ,  Y)-phase plane such as that 
through ( 2 , O )  in the example given earlier (see figure 10a). A solution of (4.22) then 
satisfies A = 2 (and correspondingly X = X s ( Q , P ( 2 ) ) ) .  

So for given ( Q ,  P ) ,  knowing the behaviour of the functions 

X , ( Q , P ( A ) ) - A ,  Xc(Q,&)) -A,  A , ( & , P ( A ) ) - A  (4.23) 

with respect to A will reveal the nature of the upstream half of the (a,a,)-phase 
plane. 

X , ,  X ,  and A,  as functions of A are parameterized by P (itself a function of A given 
by (4.8)_and plotted on figure 13) and are continuously defined for between - 00 

and 0, Pt, or P+i(1-x)Q2_(the asymptote of P as A - t c o ) ,  depending on the 
value of Q .  In  the lower limit P+- 00, A+O, it is easily shown that X ,  and A,  are 
proportional to A-’ and A4 respectively, while 

(4.24) 

Thus X ,  - A and A, - A both pass through zero when A = 0, but with positive and 
negative gradients respectively. At the upper limit of p ,  A takes a limiting value 
which we denote by A*, which may be finite or infinite. Three different types of 
behaviour may be described, as summarized on figure 14. 

Type 1.  0 < P < PA for 0 < Q < (3/2)i, and 0 < P < Pc(&) for (lc/x)+ < &, where 

PA(&) = -f(XQ” (fQ”,”L (4.25) 

(4.26) 

P = PA(&) and P = Pc(Q) are plotted as a functions of Q on figure 14(a) (and also on 
figure 11). Note that X , - A  = 0 at A = C, and X , - A  = 0 at A = S,; these will be 
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FIGURE 14. Three types of behaviour of the functions A,(A) - A ,  &(A) - A  and X,(A)  - A  : in (a)  the 
regions of (Q,P)-space corresponding to each type are shown; (b ) ,  (c) and (d) are graphs of the 
functions for parameter values in each region. 

coincident with the downstream singularities C, and 8, which exist for these 
parameter values in the (X, Y)-phase plane. 

Type 2. PA(&) < P < P(Q) for Q < (3/2);, 0 < P < P(Q) for (3/2): < Q < (3/2~)', 
and max (0, P c )  < P < P*(Q) for ( k / ~ ) i  < Q .  In this parameter regime the down- 
stream singularities C, and s, are matched by two upstream centres C,. Note also 
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that an upstream saddle point exists which always lies to the right of these 
singularities. For any (Q ,  P )  on either curve P = Pt(Q) or P = PI(&), the two roots 
C, of X , - A  = 0 coalesce to  form a double root, and this point corresponds to  the 
degenerate downstream singularity (CS), that exists for these parameter values. 

Type 3; Pt(Q) < P for Q < (3/2~);, 0 < P for ( 3 / 2 ~ ) $  < Q < ( k / ~ ) i ,  and P$(Q) < P 
for ( l c / x ) ~  < Q. An upstream saddle-point trajectory always exists. There are 
no singularities otherwise. Along the curve P = FB(Q)  (see (3.25) and figure 11 ii), it is 
easily shown that K = 1. To its left 2 < 1, and for points to its right 2 > 1. 

Finally, we may determine for which parameter values the upstream saddle point 
x corresponding to takes the value 1. First, it may easily be shown t8hat if 
Q < (3/2Ti, then- 

A,(&, 0 )  = [(I -fQz)-i- 11’ 
= A,(&), (4.27) 

say (see figure 5a). Then we have X = 1 if p(2) = 0 and d = A,; these conditions 
may be combined to give 

I .  

= Po((&), (4.28) 

say. The curve P=Po(Q)  is shown on figure l l ( i ) .  If Q <  (3/2)$ and 
PA(&) < P < Po(&) then X < 1 ; for all larger P or larger Q such that it exists, 
x> 1. 

4.3. The nature of the solutions 
We start by examining the five regions of the ( Q ,  P)-plane bounded by the curves 
P = Pt(&), P = PA(&) and P = Po((&) (shown on figure l l i ) ,  and so for the moment 
assume that Q < ki. We may summarize the relevant parts of $4.2 as follows. 

(i) Above P = Pt(&), there are no downstream singularities. Beneath i t  we have 
a downstream centre C, and a saddle point 8, in 0 < X < 1. 

(ii) Beneath P =PA(&)  there is an upstream centre C, at C, and an upstream 
saddle point S,  a t  S,. Above it,  but beneath P = Pt(Q),  C, and C, are still 
coincident but another C, is found at S,. 

(iii) For all (Q ,P)  above P = PA(&) there exists a saddle-point trajectory through 
(A, 0) (where A lies to the right of any singularities that may exist), which meets the 
X-axis a t  an upstream saddle point (x, 0). Beneath P = Po((&), X < 1 and above it 
x> 1. 

Labelling the five regions of the ( Q ,  P)-plane as shown on figure 11 (i), we may now 
look for solutions of (4.14). 

(a) Q < (3/2)$, P < PA(&) 
A typical phase portrait is shown on figure 15 (a )  (i). We have C, at C, and S,  a t  S,. 
No upstream saddle-point trajectory (A) exists. (We see from figure 14(b) that for 
these ‘Type 1’ parameter values, if A < C, then A,(A) < A  < X,(A) ,  so the 
corresponding upstream trajectories are of the form shown in figure 12b). The 
upstream and downstream boundary conditions (4.5) can only be satisfied for 
trajectories that pass through S ,  < A Q 1. I (A)  +co as A +SD + , as shown in figure 
15 (a) (ii). Solutions exist for all lengths of tube with the tube everywhere collapsed. 

( b )  Q < (3/2);, PA(&) < P < min(Pt(Q),Po(Q)) 
Corresponding to  C,  and S ,  are two upstream centres C,, and to  the right of 8, there 
is an upstream saddle-point trajectory through (X,O) which meets the X-axis at 
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(1, 0 )  with X < 1, as shown in figure 15 (b) (i). Z(A) is only defined for d < A < 1 (see 
figure lBbii), and is similar in form to case (a). 

( c )  Q < &*, Pt(&) < P < Po(&) where Pt(&*) = Po(&*) 
There are no singularities on the phase plane, but we have a saddle-point trajectory 
through (x,O) and (X,O),  where X < 1 (see figure 15ci). All upstream trajectories in 
A < d form loops that do not cross X = 1, so Z(A) is defined only for A < A < 1, as 
in case (b) ,  and as shown in figure 15 ( c )  (ii). 

( d )  &* < & < (3/2)f, Po(&) < P c Pt(&) and (3/2): < Q < (3/2~)4, 0 < P < Pt(&) 
Since P < Pt(&), C, and S,  are present again, matched by two upstream centres as 
in case (b) ,  so the downstream half-plane is just as in figure 15 (b)  (i) and no upstream 
trajectories through (A,  0 ) ,  where A < S,, can satisfy ( 4 . 5 ~ ) .  Similarly, an upstream 
saddle-point trajectory through (A, 0) and ( X ,  0) exists, with S ,  < K < 1 < X .  
Between S, and there is an upstream trajectory through (A, ,  0) which loops round 
to ( l , O ) ,  just as in the example shown in figure lO(a), and likewise no upstream 
trajectory through (A,  0 ) ,  with S ,  < A < A,,  ever meets a = 1.  Thus Z(A) is just as 
in figure lO(c); it  is defined only for A ,  < A < 1, representing tubes that are 
everywhere collapsed (LU), and it has a branch (ULU) defined for A ,  < A  < K 
representing tubes that are swollen just downstream of x = 0 and constricted further 
downstream. 

(e)  0 5 & < (3 /2~)+,  max (Pt(&), Po(&)) < P and (3 /2~)+  < & < d, 0 < P and 
d < &, PB(&) < P 
Phase planes for these parameter values are just as presented in figure lO(a); I ( A )  
(see figure 1Oc) is defined only for A ,  < A < 1. 

We now turn to the remainder of the (Q,P)-plane, where & > d (see figure l i i i ) .  
From $4.2, the phase plane has the following properties, much as before. 

(i) Above P = PI(&), there are no downstream singularities. Beneath it, a centre 
C, and a saddle point S,  are found in X > 1. 

(ii) Beneath P = Pc(&) there is an upstream centre C, a t  C, and a saddle point 
S ,  a t  S,. Between P = Pc(&) and P = PS(&), the upstream singularity a t  S ,  is a 
centre. 

(iii) Everywhere above P = Pc(&) an upstream saddle-point trajectory through 
(A, 0) exists. Beneath P = PI(&), lies to the right of S,; between P = pB(&) and 
P = PI(&), A > 1, but above pB(&),  A < 1. 

There are three regions of the (&, P)-plane that remain to be discussed, all lying to 
the right of P = pB(&) on figure 11 (ii). 

(f) d < &, P < pB(&) and PI(&) < P when ( k / ~ ) i  < Q 
No downstream singularities are present but an upstream saddle-point trajectory 
through (A,O) exists, where A> 1 (see figure 15di). I ( A )  is only defined for 
A ,  < A < 1, where the upstream trajectory through (A,,  0) passes through ( 1 , O ) .  As 
in case ( e ) ,  Z has two branches (shown as solid curves on figure 15dii) representing 
tubes which are either everywhere collapsed (LU), or which have a bulge as well as 
a constriction (ULU). Note that in this case there is an upper limit Z(Bl), (where 
B, > 1 is the point of intersection of the upstream trajectory through ( l , O ) ) ,  to the 
value of A for which solutions that are a t  some point constricted exist. However, for 
parameter values in this range the fully attached solutions that we obtained in $3 
with the tube dilated along its length also exist (assuming that there is negligible 
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FIGURE 15. (i) Trajectories in the (a,a,) phase plane in the separated-flow case; (ii) the 
corresponding graphs of I ( A ) .  Parameter values are: (a)  Q = 1, P = 1 (region a of figure 11); 
( b )  Q = 1, P = 5 (region b ) ;  (c) Q = 1, P = 7 (region c ) ;  ( d )  Q = 12, P = 8 (region f); ( e )  Q = 14, 
P = 4 (region 9 ) ;  E = 45 and x = 0.5 in all cases. 

separation a t  x = 0). We show the (dotted) UL branch of I representing these 
solutions in figure 15 (d )  (ii), corresponding to the UL branch in figure 6 ( e )  (ii) - see 
figure 6(e) (i) for the appropriate trajectories ; as before, these dilated solutions exist 
provided h > Imin. 

(9) ( k / ~ ) i  < &, P < PI(&) and P > max (0, P"(&)) 
The downstream centre C, and saddle point S,  are matched by two upstream 
centres. An upstream saddle-point trajectory lies to the right of S,  in X > 1, so as 
far as solutions satisfying (4.5) are concerned, the behaviour is just as in case (f). See 
figures 15 ( e )  (i) and (ii). 

( h )  Q" < Q, P < Pc(Q), where PC(Qc) = 0 
The only difference between this case and case (9) is that  S ,  is now matched by an 
upstream saddle point S,, but this has no effect on the behaviour of I which is the 
same as that shown in figure 15 ( e )  (ii). 

Finally, mention must be made of the case P < 0. When there is no separation, it 
was found in $3  that, as well as the expected distended solution, there exists a 
surprising solution with the tube collapsed a t  some point (see the curve LU in figure 
6aii). When separation is included in the calculation, the distended solution is 
obviously unaffected but the collapsed one vanishes. This is because all upstream 
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separated downstream of a constriction exists for all (Q ,  P )  t o  the left of A = Z(Bl). 

trajectories in A < A ,  bend over to  meet the X-axis in X < 1 ,  making it impossible 
to satisfy the upstream boundary condition (4.5~). 

4.4. Conclusions 

We may draw the following conclusions. Beneath the curve P = Po(&) in the (&, P)- 
plane, (regions a, b and c on figure l l) ,  for all lengths of tube and tensions there exists 
a steady solution with the tube held open a t  both ends but at every intermediate 
point having a < 1 ,  with the flow separating downstream of the point of greatest 
constriction. Between P = Po(&) and P = pB(&),  (regions d and e ) ,  such solutions for 
a tube of dimensionless length h exist only beneath the contour h = I ( A l ) ,  where 
A ,  = A , ( & ,  P ) .  Such a contour is shown in figure 16. For longer tubes, steady 
solutions are found which have a swelling just downstream of the opening of the tube 
as well as a constriction further downstream, a t  which separation takes place. 

In the remaining regions of ( Q ,  P)-space (f, g and h) ,  however, solutions for which 
separation occurs exist only for sufficiently short tubes. Again two types of 
configuration are then possible: for very short tubes (i.e. for A < I (Al ) ) ,  a Q 1 
everywhere bctween the end points; for longer tubes with I @ , )  < A < I(&), there is 
a bulge in the tube with a constriction further downstream. With h > I(Bl),  for these 
parameter values a unique solution always exists in which the tube is dilated 
everywhere, so that no separation occurs. 

5.  Results 
5.1. Fully attached flow 

For a given dimensionless tube length A ,  the regions of ( Q , P )  parameter space for 
which solutions to 

h = I ( A ; Q , P )  (5.1) 

exist are as shown on figure 8. Beneath h = Im,JQ, P ) ,  two solutions exist with the 
elastic tube everywhere collapsed. I n  some circumstances (e.g. for subcritical entry 
flow and small pressures - see figure Gbii) these two solutions may be explicitly 
associated with sub- and supercritical flows : the larger value of A corresponds to flow 
that is everywhere subcritical; the other root is small enough for the flow to be 
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supercritical at  the constriction. For increasing pressures and flow rates, the two 
roots gradually approach one another, the ‘ subcritical’ one becoming smaller and the 
‘supercritical’ one larger, until eventually the contour h = I,,, is reached; the roots 
are then equal and the tube may be said to be on the point of choking. There is no 
simple relationship between the flow velocity u and the wave speed c at  this point 
because of the dispersive effect of longitudinal tension. Indeed, the dimensional tube 
length and the degree of tension, which are both incorporated in the parameter A ,  
influence the pressures and flow rates at  which choking will occur. 

Between h = Z,,, and A = Imin (also plotted on figure 8), no solutions exist. 
However for all (Q, P )  to the right of h = Imin, the tube may take up a configuration 
in which it is dilated everywhere; for sufficiently large Q a variety of periodic 
solutions are also possible, with the collapsible segment alternately dilated and 
contracted along its length. Such configurations, which are also obtained when 
P < 0, were discussed in greater detail by Reyn (1987). 

5.2.  Separated $ow 
Whereas in figure 8 we see a region of (Q, P)-space for which no solutions exist, the 
corresponding graph (figure 16) shows that solutions with either separated flow 
downstream of a constriction or a dilated configuration may be found for all Q, P > 0. 
However, only one fully collapsed solution for (&,P) beneath h =I@,) is found 
(the ‘supercritical’ solution of fully attached flow is never obtained). Corre- 
spondingly, no choking phenomenon occurs. Rather, as flow rate increases a bulge 
develops in the tube upstream of the constriction (see figure 17a, b ) ,  so that to the 
right of h = I @ , )  the tube is both dilated and contracted (figure 17c). Further 
increases in flow rate enlarge the bulge and force open the constriction until, along 
A = Z(Bl), the tube is fully dilated and no energy loss by separation occurs. For larger 
flow rates, there is a solution with the flow fully attached and the tube becoming 
increasingly dilated, but the transition to this solution as we cross h = I(&) is not 
achieved continuously (as can be seen from figure 15eii, say). 

5.3. Comparison with experiment 
Whenever a solution of (5.1) exists with separation taking place downstream of a 
constriction, it is possible to calculate the pressure drop down the collapsible segment 
using (4.9) and thus to compare it with the corresponding flow rate. 

There are two ways of presenting this relationship which have been favoured by 
experimentalists, and which can easily be reproduced by this model. The first 
approach is that taken by Brower & Scholten (1975), Bonk & Ribreau (1978) and 
also by Bertram (1986): with p , -p2  held constant, p l - p ,  is plotted against Q .  
Bertram’s experimental curves are reproduced in figure 18 (a) .  Since he used a thick- 
walled tube for these measurements, good quantitative agreement between our (thin- 
walled) model and his results cannot be anticipated. It should also be remembered 
that p ,  and p ,  are not measured precisely at the ends of the collapsible segment, but 
at short distances up- and downstream of these points. 

Figure 18 (b)  shows curves calculated for five different values of p, -p , ,  with h and 
x held constant at  values of 25.2 and 0.2 respectively. The left-hand part of the 
curves, corresponding to tubes collapsed along their length (where p1 -p2  < p ,  - p ,  
on figure 18b) show an increasing resistance to flow as Q increases, but not in so linear 
or so rapid a manner as obtained experimentally, presumably a reflection of our 
neglect of friction. For each curve the rate of increase drops just before the pressure 
drop reaches the corresponding value of p,-p, ,  as the collapsed region is forced 
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FIQURE 17. Three tube shapes calculated for A = 3, x = 0.2, k = 45 and P = 5 ,  with the flow rate 
increasing through values (a) Q = 0.7, ( b )  Q = 2.3, (c) Q = 5.0, showing how a bulge develops 
upstream while the flow separates at the constriction downstream. 
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open ; our model predicts upstream swelling of the tube generally just beyond this 
bend in the curve, when p ,  is very slightly greater than pe.  Bertram measured similar 
bends in the curves, but always when p ,  -p ,  was a little less than p e - p z .  For all but 
the smallest downstream transmural pressures (when there is little collapse and 
friction is probably the predominant cause of pressure drop), he found it  impossible 
to  obtain steady flows beyond this bend. This suggests that there may be a 
connection between the loss of stability and the swelling predicted by our model. 

In  general, solutions of (5.1) are all extremely close to  the asymptotes of I (such 
as 8, or A), and the pressure-drop curves are largely indistinguishable for all values 
of h 2 5 ,  say, and the values of h corresponding to Bertram’s experiments are greater 
than 5 (see $2.6). (The jet energy loss only occurs in the far downstream (constricted) 
section of the tube, as in figure 17(c),  and we are neglecting a viscous contribution 
to the pressure drop which grows as A increases.) Thus once p ,  > p ,  in figure 18(b), 
a good approximation for the pressure drop is given by (4.9) but with A replaced by 
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FIGURE 18. Comparison between (a) experimental measurements by Bertram (1986) of pressure 
drop p , - p ,  down the collapsible tube plotted against flow rate (reproduced with permission), for 
fixed values of p,-p,; and (b) curves calculated over a wider range of flow rates but otherwise using 
his parameter values: h = 25.2, k = 45, 0 < Q < 4 and P = 1.8, 3.6, 5.4, 7.2 and 9.0; x i s  chosen to  
be 0.2. The different symbols used in (a) to mark the measured points correspond to different 
downstream resistances used in the experiment, while the adjacent numbers refer to the frequency 
of observed oscillations, and for these cases time-averaged pressures are recorded. 
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A(Q,P),  the limiting size of the constriction when the tube has a bulge upstream. For 
fixed p,-p2, as Q rises the bulge widens but decreases, causing an increase in 
resistance to the flow. However, there is a point (beyond the range of Q chosen for 
figure 18b), beyond which further rises in Q force the tube t o  widen everywhere, so 
that the constriction diminishes until finally (when Q and P satisfy P = p’”(&)) the 
tube is everywhere dilated, and there is no separation, no energy loss and zero 
pressure drop. For such large flow rates frictional pressure loss would of course be 
substantial. 

Our predictions are given in dimensional form, and i t  is clear that there is 
reasonable quantitative agreement between the pressure values of figures 18 ( a )  and 
( b ) :  the ‘corners’ in each calculated curve occur almost exactly where p ,  = p, ,  
whereas Bertram never measured p ,  > p,, so we overestimate the pressure drop 
slightly. (Better agreement is obtained with x small, 0.2 say, rather than 0.5, as the 
smaller x is, the lower is the maximum pressure drop. This is counter to expec- 
tation - one would expect an increase in x to cause a reduction in pressure drop, as 
more pressure recovery is then allowed along the jet emerging from the constriction, 
but this is only observed for small flow rates when the tube is everywhere collapsed.) 
The flow rate scales do not agree well, however : the whole of figure 18 ( a )  is modelled 
by the left-hand part of 18(b), with 0 < Q < 500 ml s-l, and so the predicted p,-p,  
us. Q curve has a much gentler slope in the predictions than in the experiments. 

Agreement with the experiments of Bonis & Ribreau (1978) is more encouraging, 
which is more understandable since they used a thinner-walled tube than Bertram. 
On their plot of the pressure-flow rate relations (figure 19a) they mark three regimes, 
bounded by the curves marked p ,  = p ,  and p ,  = p,. The former describes the points 
where the opposite walls of the tube just come into contact. In  the region to the left 
of this curve, they report that the tube is collapsed along its entire length (e.g. 
figure 17a), with the flow passing down the parallel lobes within the tube. It is in this 
region that frictional energy loss predominates over jet energy loss, and accordingly 
our theory (using exactly their parameter values, and x = 0.2) severely under- 
estimates the measured pressure drop. I n  the region adjacent to this, Bonis & 
Ribreau report the upstream half of the tube opening up more than the downstream 
half as the flow rate increases, which corresponds with our calculations (see figure 
17 b). The boundary of the third region, on which P = 0, we mark on our diagram 
(figure 19b) with a dotted curve. Along this line the curvature of the tube wall a t  the 
upstream end, !pzz(0), changes sign and for only slightly larger flow rates the tube 
is dilated in its upstream half and constricted further downstream, as in figure 17 (c) ; 
correspondingly, Bonis & Ribreau describe the tube as open for its entire length, 
except for a neck at the downstream end. The pressure dropflow rate curves in this 
third region are in excellent agreement (justifying our neglect of friction in this case) 
showing only weak resistance to  flow. But this may be fortuitous: the tube shape 
when Q = 27 cm3/s, P = 30 cmH,O has the ‘neck’ in the tube restricted to the final 
15% of its length, with the area changing from a = 0.1 to a = 1 over half this 
distance. Thus for these parameter values our assumption that area variations occur 
over long lengthscales is not justified, and the consistency of our results must be 
called into question. Unsteady behaviour is reported by Bonis & Ribreau to occur 
shortly after the ‘corner ’ in the curves, corresponding to Bertram’s observations, 
and in this regime therefore they plot time-averaged quantities. 

An alternative method of plotting pressure drop against flow rate is to fix the 
resistance in the downstream rigid tube, v , I ~ ,  and the external pressure, p,, so that as 
Q increases p,-p, = p , - q 2 Q 2  decreases. In  this case we seek to compare the 
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FIQURE 19. (a) Curves of pressure drop VB. flow rate for fixed values of pe-p2 ,  measured by Bonk 
& Ribreau (1979) (reproduced with permission) ; and ( b )  the same quantities calculated using their 
parameter values: A = 2.9, k = 2250, 0 < Q < 2.72, P = 5.52 x (1 ,  5, 10, 15, 20, 30); again x = 0.2. 
The points at which the upstream transmural pressure difference is zero ( p ,  = p e )  is shown as a 
dotted line in both diagrams. 

predictions with Conrad's (1969) experiments, for which parameter values were also 
given in $2.6, and for which some results are given in figure 20(a). The value of 
p ,  = 29.5 mmHg corresponds top, = 71.3 with K ,  = 55.8 Pa (orp, = 7.13 x lo4 with 
K,  = 5.58 x lo-, Pa, for the smaller wall thickness) ; r ] ,  varies between 109 (curve l) ,  
1960 (curve 7) and 8710 (curve 8); A = 1.1 (or 0.11). Predictions for these parameter 
values are given in figures 20 ( 6 )  and 20 ( c ) ,  

For very small flow rates in Conrad's experiments, p , - p ,  is large and the tube 
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FIGIJRE 20. (a )  Pressure drop is plotted against flow rate for fixed values of the downstream 
resistance v2 by Conrad (1969) (reproduced with permission) ; the breaks in curves 1 4  correspond 
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4.0); we take x = 0.2. (c) Similar calculations for parameter values corresponding to a wall 
thickness of 0.093 mm instead of 0.93 mm ( A  = 0.11, k = 28000, p ,  = 7.13 x lo4). 
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completely collapsed, and pressure drop rises rapidly as Q increases (figure 20a). 
(Note, however, that Conrad measured a more linear variation than we calculated, 
again demonstrating the importance of friction in these circumstances, both in the 
collapsible segment and in the downstream rigid tube.) There is a corresponding rise 
in the upstream pressure p,, which proceeds until p ,  and p ,  are approximately equal, 
a t  which point the pressure drop has its maximum value. For larger flow rates, 
p ,  > pe  and p1 -pz  falls as Q increases: the rising flow rate and falling down- 
stream transmural pressure force open the constriction so that the tube offers 
decreasing resistance to the flow. (It is in this parameter range that, for the smaller 
downstream resistances used in his experiments, Conrad reports unsteady behaviour, 
shown by the breaks in curves 1 4  in figure 20a). Eventually, when Q 2 (pe/v2)+, the 
tube is everywhere dilated and the only mechanism of energy loss is then friction (so 
that Conrad measured a gentle rise in pressure drop with flow rate, which cannot be 
reproduced by our model). 

We consider first the predictions corresponding to the greater wall thickness of 
h = 0.93 mm, in figure 20 (b ) .  The maximum dimensionless flow rate for curve 1 in this 
figure is 0.8, so that for all points along the curve the flow rate is small (i.e. it is always 
subcritical a t  x: = 0, less than in either Bonis & Ribreau’s or Bertram’s experiments). 
Thus almost everywhere along the curve, p,-p, is sufficiently large for the tube to 
be greatly collapsed along its length, and even when Q approaches its maximum 
value, and p,-p, becomes quite small, the flow is not great enough for swelling to 
develop upstream (which Conrad reports in his experiments). Under these conditions, 
therefore, friction would be a very important cause of pressure drop, and may 
explain why we underestimate p,-p, by about a factor of four. (With x = 0.5 the 
difference is even greater, as would be expected for small flow rates.) Another cause 
of error is that when the elastic segment is greatly collapsed, a, is very large at  the 
joins with the upstream and downstream rigid tubes, so that we fail to satisfy 
condition (2.12) and we are not justified in neglecting large nonlinear terms when 
approximating the longitudinal radius of curvature of the tube. However, the shape 
of the curves in figure 20(b )  are qualitatively similar to those in figure 20(a) .  

If we consider predictions based on the smaller wall thickness of 0.093 mm, on the 
other hand (in figure ~ O C ) ,  the shape of the curves is completely different, showing 
an extremely rapid rise in pressure drop at small flow rate, when the tube is highly 
collapsed, and unrealistically convex curves of decreasing pressure drop as Q 
increases. These curves look wrong, but in fact that maximum predicted pressure 
drop is quite well predicted, a t  least for curve 1 .  Moreover the tube shape corresponds 
more closely with experiments, with a bulge in the upstream part of the tube for 
points to  the right of the asterisks in figure 20(c) ,  as observed. It is probable that we 
could achieve acceptable agreement with experiment by selecting a wall thickness 
somewhere between 0.93 and 0.093 mm, but there is no a priori justification for that. 

5.4. Conclusions 
The shortcomings of this model are numerous, but are not so severe as to prevent 
quite reasonable qualitative agreement between theory and experiment. Separation 
of the turbulent jet downstream of a constriction in the tube is shown to have a 
contribution to total energy loss that is substantial enough for major features of 
behaviour (such as negative flow resistance in the Conrad experiment) to be 
predicted. Obviously inclusion of wall friction in the model will be an important 
refinement ; however other improvements, such as a more realistic tube law, may not 
add greatly to our understanding, a t  least of steady flow. Of particular interest in the 



374 0. E .  Jensen and T .  J .  Pedley 

dynamical systems context will be the conditions for instability of the steady flows 
modelled in this paper ; a stability analysis is currently underway. 

During the course of this work O.E.J. was supported by an SERC Research 
Studentship. He is additionally grateful for a bursary provided by Smith Associates 
Ltd. 
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