1,422 research outputs found

    Rods Near Curved Surfaces and in Curved Boxes

    Full text link
    We consider an ideal gas of infinitely rigid rods near a perfectly repulsive wall, and show that the interfacial tension of a surface with rods on one side is lower when the surface bends towards the rods. Surprisingly we find that rods on both sides of surfaces also lower the energy when the surface bends. We compute the partition functions of rods confined to spherical and cylindrical open shells, and conclude that spherical shells repel rods, whereas cylindrical shells (for thickness of the shell on the order of the rod-length) attract them. The role of flexibility is investigated by considering chains composed of two rigid segments.Comment: 39 pages including figures and tables. 12 eps figures. LaTeX with REVTe

    Brane Decay of a (4+n)-Dimensional Rotating Black Hole. II: spin-1 particles

    Get PDF
    The present works complements and expands a previous one, focused on the emission of scalar fields by a (4+n)-dimensional rotating black hole on the brane, by studying the emission of gauge fields on the brane from a similar black hole. A comprehensive analysis of the particle, energy and angular momentum emission rates is undertaken, for arbitrary angular momentum of the black hole and dimensionality of spacetime. Our analysis reveals the existence of a number of distinct features associated with the emission of spin-1 fields from a rotating black hole on the brane, such as the behaviour and magnitude of the different emission rates, the angular distribution of particles and energy, the relative enhancement compared to the scalar fields, and the magnitude of the superradiance effect. Apart from their theoretical interest, these features can comprise clear signatures of the emission of Hawking radiation from a brane-world black hole during its spin-down phase upon successful detection of this effect during an experiment.Comment: 35 pages, 19 figures, Latex fil

    From bench scale to pilot plant: A 150x scaled-up configuration of a microwave-driven structured reactor for methane dehydroaromatization

    Get PDF
    Microwave-assisted gas-phase conversion on structured catalysts is emerging as a promising process intensifi-cation technology in the field of heterogeneous catalysis. The combination of selective heating and structured catalytic materials induces a temperature difference between the heated catalytic sample and the surrounding void regions to avoid non-selective gas-phase reactions. This operational principle allowed inhibiting thermal cracking in alkane dehydrogenation processes as well as retarding catalyst deactivation by coking in methane dehydroaromatization (MDA) processes. However, its effectiveness has not been reported so far out of the lab-oratory scale conditions. This work addresses the scaling of the microwave-assisted MDA process from lab scale experiments to a scaled-up configuration capable of stable operation with a 150-fold higher feeding rate. The scaling-up potential and main obstacles to overcome for this technology are critically discussed. In addition, a techno-economic assessment of the MW-MDA process is presented. The catalytic activity was kept for seven consecutive reaction cycles, i.e. 35 h MW-MDA, prior to a progressive decay due to permanent deactivation caused by zeolite dealumination and active metal loss. The scaled set-up operated for up to 295 consecutive hours under unmanned operation conducting 4 -h MDA-regeneration cycles on Mo/ZSM-5@SiC monoliths and resulting in 125-fold increase of converted methane and a 450-fold increase of benzene (0.17 LC6H6/h) in comparison with the laboratory scale tests. Scaled set-up experiments were run using only a 6-fold microwave input power, thus, highlighting the non-linearity between energy consumption and scaling factor for this tech-nology and the importance of microwave cavity design

    Macroalgae contribute to nested mosaics of pH variability in a subarctic fjord

    Get PDF
    The Arctic Ocean is considered the most vulnerable ecosystem to ocean acidification, and large-scale assessments of pH and the saturation state for aragonite (O<sub>arag</sub>) have led to the notion that the Arctic Ocean is already close to a corrosive state. In high-latitude coastal waters the regulation of pH and O<sub>arag</sub> is, however, far more complex than offshore because increased biological activity and input of glacial meltwater affect pH. Effects of ocean acidification on calcifiers and non-calcifying phototrophs occupying coastal habitats cannot be derived from extrapolation of current and forecasted offshore conditions, but they require an understanding of the regimes of pH and O<sub>arag</sub> in their coastal habitats. To increase knowledge of the natural variability in pH in the Arctic coastal zone and specifically to test the influence of benthic vegetated habitats, we quantified pH variability in a Greenland fjord in a nested-scale approach. A sensor array logging pH, O<sub>2</sub>, PAR, temperature and salinity was applied on spatial scales ranging from kilometre scale across the horizontal extension of the fjord; to 100 m scale vertically in the fjord, 10–100 m scale between subtidal habitats with and without kelp forests and between vegetated tidal pools and adjacent vegetated shores; and to centimetre to metre scale within kelp forests and millimetre scale across diffusive boundary layers of macrophyte tissue. In addition, we assessed the temporal variability in pH on diurnal and seasonal scales. Based on pH measurements combined with point samples of total alkalinity, dissolved inorganic carbon and relationships to salinity, we also estimated variability in O<sub>arag</sub>. Results show variability in pH and O<sub>arag</sub> of up to 0.2–0.3 units at several scales, i.e. along the horizontal and vertical extension of the fjord, between seasons and on a diel basis in benthic habitats and within 1 m<sup>3</sup> of kelp forest. Vegetated intertidal pools exhibited extreme diel pH variability of &gt; 1.5 units and macrophyte diffusive boundary layers a pH range of up to 0.8 units. Overall, pelagic and benthic metabolism was an important driver of pH and O<sub>arag</sub> producing mosaics of variability from low levels in the dark to peak levels at high irradiance generally appearing favourable for calcification. We suggest that productive coastal environments may form niches of high pH in a future acidified Arctic Ocean

    Bond-disordered Anderson model on a two dimensional square lattice - chiral symmetry and restoration of one-parameter scaling

    Full text link
    Bond-disordered Anderson model in two dimensions on a square lattice is studied numerically near the band center by calculating density of states (DoS), multifractal properties of eigenstates and the localization length. DoS divergence at the band center is studied and compared with Gade's result [Nucl. Phys. B 398, 499 (1993)] and the powerlaw. Although Gade's form describes accurately DoS of finite size systems near the band-center, it fails to describe the calculated part of DoS of the infinite system, and a new expression is proposed. Study of the level spacing distributions reveals that the state closest to the band center and the next one have different level spacing distribution than the pairs of states away from the band center. Multifractal properties of finite systems furthermore show that scaling of eigenstates changes discontinuously near the band center. This unusual behavior suggests the existence of a new divergent length scale, whose existence is explained as the finite size manifestation of the band center critical point of the infinite system, and the critical exponent of the correlation length is calculated by a finite size scaling. Furthermore, study of scaling of Lyapunov exponents of transfer matrices of long stripes indicates that for a long stripe of any width there is an energy region around band center within which the Lyapunov exponents cannot be described by one-parameter scaling. This region, however, vanishes in the limit of the infinite square lattice when one-parameter scaling is restored, and the scaling exponent calculated, in agreement with the result of the finite size scaling analysis.Comment: 23 pages, 11 figures. RevTe

    Percolation in Models of Thin Film Depositions

    Full text link
    We have studied the percolation behaviour of deposits for different (2+1)-dimensional models of surface layer formation. The mixed model of deposition was used, where particles were deposited selectively according to the random (RD) and ballistic (BD) deposition rules. In the mixed one-component models with deposition of only conducting particles, the mean height of the percolation layer (measured in monolayers) grows continuously from 0.89832 for the pure RD model to 2.605 for the pure RD model, but the percolation transition belong to the same universality class, as in the 2- dimensional random percolation problem. In two- component models with deposition of conducting and isolating particles, the percolation layer height approaches infinity as concentration of the isolating particles becomes higher than some critical value. The crossover from 2d to 3d percolation was observed with increase of the percolation layer height.Comment: 4 pages, 5 figure

    Morphology of the archaellar motor and associated cytoplasmic cone in Thermococcus kodakaraensis

    Get PDF
    Archaeal swimming motility is driven by archaella: rotary motors attached to long extracellular filaments. The structure of these motors, and particularly how they are anchored in the absence of a peptidoglycan cell wall, is unknown. Here, we use electron cryotomography to visualize the archaellar basal body in vivo in Thermococcus kodakaraensis KOD1. Compared to the homologous bacterial type IV pilus (T4P), we observe structural similarities as well as several unique features. While the position of the cytoplasmic ATPase appears conserved, it is not braced by linkages that extend upward through the cell envelope as in the T4P, but rather by cytoplasmic components that attach it to a large conical frustum up to 500 nm in diameter at its base. In addition to anchoring the lophotrichous bundle of archaella, the conical frustum associates with chemosensory arrays and ribosome‐excluding material and may function as a polar organizing center for the coccoid cells

    Center or Limit Cycle: Renormalization Group as a Probe

    Full text link
    Based on our studies done on two-dimensional autonomous systems, forced non-autonomous systems and time-delayed systems, we propose a unified methodology - that uses renormalization group theory - for finding out existence of periodic solutions in a plethora of nonlinear dynamical systems appearing across disciplines. The technique will be shown to have a non-trivial ability of classifying the solutions into limit cycles and periodic orbits surrounding a center. Moreover, the methodology has a definite advantage over linear stability analysis in analyzing centers
    corecore