The present works complements and expands a previous one, focused on the
emission of scalar fields by a (4+n)-dimensional rotating black hole on the
brane, by studying the emission of gauge fields on the brane from a similar
black hole. A comprehensive analysis of the particle, energy and angular
momentum emission rates is undertaken, for arbitrary angular momentum of the
black hole and dimensionality of spacetime. Our analysis reveals the existence
of a number of distinct features associated with the emission of spin-1 fields
from a rotating black hole on the brane, such as the behaviour and magnitude of
the different emission rates, the angular distribution of particles and energy,
the relative enhancement compared to the scalar fields, and the magnitude of
the superradiance effect. Apart from their theoretical interest, these features
can comprise clear signatures of the emission of Hawking radiation from a
brane-world black hole during its spin-down phase upon successful detection of
this effect during an experiment.Comment: 35 pages, 19 figures, Latex fil