11 research outputs found

    Review article: Assessing the costs of natural hazards - state of the art and knowledge gaps

    Get PDF
    Efficiently reducing natural hazard risks requires a thorough understanding of the costs of natural hazards. Current methods to assess these costs employ a variety of terminologies and approaches for different types of natural hazards and different impacted sectors. This may impede efforts to ascertain comprehensive and comparable cost figures. In order to strengthen the role of cost assessments in the development of integrated natural hazard management, a review of existing cost assessment approaches was undertaken. This review considers droughts, floods, coastal and Alpine hazards, and examines different cost types, namely direct tangible damages, losses due to business interruption, indirect damages, intangible effects, and the costs of risk mitigation. This paper provides an overview of the state-of-the-art cost assessment approaches and discusses key knowledge gaps. It shows that the application of cost assessments in practice is often incomplete and biased, as direct costs receive a relatively large amount of attention, while intangible and indirect effects are rarely considered. Furthermore, all parts of cost assessment entail considerable uncertainties due to insufficient or highly aggregated data sources, along with a lack of knowledge about the processes leading to damage and thus the appropriate models required. Recommendations are provided on how to reduce or handle these uncertainties by improving data sources and cost assessment methods. Further recommendations address how risk dynamics due to climate and socio-economic change can be better considered, how costs are distributed and risks transferred, and in what ways cost assessment can function as part of decision support

    The costing of measures for natural hazard mitigation

    No full text
    The literature on the costing of mitigation measures for reducing impacts of natural hazards is rather fragmented. This paper provides a concise overview of the current state of knowledge in Europe on the costing of mitigation measures for the reduction of natural hazard risks (droughts, floods, storms and induced coastal hazards as well as alpine hazards) and identifies knowledge gaps and related research recommendations. Furthermore, it provides a taxonomy of related mitigation options, classifying them into nine categories: (1) management plans, land-use planning, and climate adaptation; (2) hazard modification; (3) infrastructure; (4) mitigation measures (stricto sensu); (5) communication in advance of events; (6) monitoring and early warning systems; (7) emergency response and evacuation; (8) financial incentives; and (9) risk transfer (including insurance). It is found that the costing of mitigation measures in European and in other countries has almost exclusively focused on estimating direct costs. A cost assessment framework that addresses a range of costs, possibly informed by multiple stakeholders, would provide more accurate estimates and could provide better guidance to decision makers

    Impacts of Flooding and Flood Preparedness on Subjective Well-Being: A Monetisation of the Tangible and Intangible Impacts

    No full text
    Flood disasters severely impact human subjective well-being (SWB). Nevertheless, few studies have examined the influence of flood events on individual well-being and how such impacts may be limited by flood protection measures. This study estimates the long term impacts on individual subjective well-being of flood experiences, individual subjective flood risk perceptions, and household flood preparedness decisions. These effects are monetised and placed in context through a comparison with impacts of other adverse events on well-being. We collected data from households in flood-prone areas in France. The results indicate that experiencing a flood has a large negative impact on subjective well-being that is incompletely attenuated over time. Moreover, individuals do not need to be directly affected by floods to suffer SWB losses since subjective well-being is lower for those who expect their flood risk to increase or who have seen a neighbour being flooded. Floodplain inhabitants who prepared for flooding by elevating their home have a higher subjective well-being. A monetisation of the aforementioned well-being impacts shows that a flood requires €150,000 in immediate compensation to attenuate SWB losses. The decomposition of the monetised impacts of flood experience into tangible losses and intangible effects on SWB shows that intangible effects are about twice as large as the tangible direct monetary flood losses. Investments in flood protection infrastructure may be under funded if the intangible SWB benefits of flood protection are not taken into account

    A computable cellular stress network model for non-diseased pulmonary and cardiovascular tissue

    Get PDF
    BACKGROUND: Humans and other organisms are equipped with a set of responses that can prevent damage from exposure to a multitude of endogenous and environmental stressors. If these stress responses are overwhelmed, this can result in pathogenesis of diseases, which is reflected by an increased development of, e.g., pulmonary and cardiac diseases in humans exposed to chronic levels of environmental stress, including inhaled cigarette smoke (CS). Systems biology data sets (e.g., transcriptomics, phosphoproteomics, metabolomics) could enable comprehensive investigation of the biological impact of these stressors. However, detailed mechanistic networks are needed to determine which specific pathways are activated in response to different stressors and to drive the qualitative and eventually quantitative assessment of these data. A current limiting step in this process is the availability of detailed mechanistic networks that can be used as an analytical substrate. RESULTS: We have built a detailed network model that captures the biology underlying the physiological cellular response to endogenous and exogenous stressors in non-diseased mammalian pulmonary and cardiovascular cells. The contents of the network model reflect several diverse areas of signaling, including oxidative stress, hypoxia, shear stress, endoplasmic reticulum stress, and xenobiotic stress, that are elicited in response to common pulmonary and cardiovascular stressors. We then tested the ability of the network model to identify the mechanisms that are activated in response to CS, a broad inducer of cellular stress. Using transcriptomic data from the lungs of mice exposed to CS, the network model identified a robust increase in the oxidative stress response, largely mediated by the anti-oxidant NRF2 pathways, consistent with previous reports on the impact of CS exposure in the mammalian lung. CONCLUSIONS: The results presented here describe the construction of a cellular stress network model and its application towards the analysis of environmental stress using transcriptomic data. The proof-of-principle analysis described here, coupled with the future development of additional network models covering distinct areas of biology, will help to further clarify the integrated biological responses elicited by complex environmental stressors such as CS, in pulmonary and cardiovascular cells

    Cost assessment of natural hazards - State-of-the-art, knowledge gaps and recommendations

    No full text
    Effective and efficient reduction of, or adaptation to, natural hazard risks requires a thorough understanding of the costs of natural hazards in order to develop sustainable risk management strategies. The current methods that assess the costs of different natural hazards employ a diversity of terminologies and approaches for different hazards and impacted sectors. This makes it difficult to arrive at robust, comprehensive and comparable cost figures. The CONHAZ (Costs of Natural Hazards) project aimed to compile and synthesise current knowledge on cost assessment methods in order to strengthen the role of cost assessments in the development of integrated natural hazard management and adaptation planning. In order to achieve this, CONHAZ has adopted a comprehensive approach, considering natural hazards ranging from droughts, floods and coastal hazards to Alpine hazards, as well as different impacted sectors and cost types (direct tangible damages, losses due to business interruption, indirect damages, intangible effects, and costs of risk mitigation). This presentation summarises the main results of CONHAZ. These comprise findings regarding best practices, overall knowledge gaps and recommendations for practice and research. The presentation will give an overview on general as well as hazard-specific findings and outline the recommendations that include issues such as comprehensiveness, uncertainties, improvement of data sources, improvement of methods, future dynamics of risk, distribution of risks and risk transfer, knowledge exchange, as well as cost assessment as decision support
    corecore