525 research outputs found

    Variance Analysis of Wind and Natural Gas Generation under Different Market Structures: Some Observations

    Get PDF
    Does large scale penetration of renewable generation such as wind and solar power pose economic and operational burdens on the electricity system? A number of studies have pointed to the potential benefits of renewable generation as a hedge against the volatility and potential escalation of fossil fuel prices. Research also suggests that the lack of correlation of renewable energy costs with fossil fuel prices means that adding large amounts of wind or solar generation may also reduce the volatility of system-wide electricity costs. Such variance reduction of system costs may be of significant value to consumers due to risk aversion. The analysis in this report recognizes that the potential value of risk mitigation associated with wind generation and natural gas generation may depend on whether one considers the consumer's perspective or the investor's perspective and whether the market is regulated or deregulated. We analyze the risk and return trade-offs for wind and natural gas generation for deregulated markets based on hourly prices and load over a 10-year period using historical data in the PJM Interconnection (PJM) from 1999 to 2008. Similar analysis is then simulated and evaluated for regulated markets under certain assumptions

    A Comparison of Two Ovine Lumbar Intervertebral Disc Injury Models for the Evaluation and Development of Novel Regenerative Therapies

    Full text link
    © The Author(s) 2018. Study Design: Large animal research. Objective: Lumbar discectomy is the most commonly performed spinal surgical procedure. We investigated 2 large animal models of lumbar discectomy in order to study the regenerative capacity of mesenchymal stem cells following disc injury. Methods: Twelve adult ewes underwent baseline 3-T magnetic resonance imaging (MRI) followed by lumbar intervertebral disc injury by either drill bit (n = 6) or annulotomy and partial nucleotomy (APN) (n = 6). Necropsies were performed 6 months later. Lumbar spines underwent 3-T and 9.4-T MRI prior to histological, morphological and biochemical analysis. Results: Drill bit-injured (DBI) and APN-injured discs demonstrated increased Pfirrmann grades relative to uninjured controls (P <.005), with no difference between the 2 models. Disc height index loss was greater in the APN group compared with the DBI group (P <.005). Gross morphology injury scores were higher in APN than DBI discs (P <.05) and both were higher than controls (P <.005). Proteoglycan was reduced in the discs of both injury models relative to controls (P <.005), but lower in the APN group (P <.05). Total collagen of the APN group disc regions was higher than DBI and control discs (P <.05). Histology revealed more matrix degeneration, vascular infiltration, and granulation in the APN model. Conclusion: Although both models produced disc degeneration, the APN model better replicated the pathobiology of human discs postdiscectomy. We therefore concluded that the APN model was a more appropriate model for the investigation of the regenerative capacity of mesenchymal stem cells administered postdiscectomy

    Evaluated kinetic and photochemical data for atmospheric chemistry: Volume IV – gas phase reactions of organic halogen species

    Get PDF
    This article, the fourth in the series, presents kinetic and photochemical data sheets evaluated by the IUPAC Subcommittee on Gas Kinetic Data Evaluation for Atmospheric Chemistry. It covers the gas phase and photochemical reactions of organic halogen species, which were last published in 1997, and were updated on the IUPAC website in 2006/07. The article consists of a summary sheet, containing the recommended kinetic parameters for the evaluated reactions, and four appendices containing the data sheets, which provide information upon which the recommendations are made

    Acid-yield measurements of the gas-phase ozonolysis of ethene as a function of humidity using Chemical Ionisation Mass Spectrometry (CIMS)

    Get PDF
    Gas-phase ethene ozonolysis experiments were conducted at room temperature to determine formic acid yields as a function of relative humidity (RH) using the integrated EXTreme RAnge chamber-Chemical Ionisation Mass Spectrometry technique, employing a CH&lt;sub&gt;3&lt;/sub&gt;I ionisation scheme. RHs studied were &lt;1, 11, 21, 27, 30 % and formic acid yields of (0.07±0.01) and (0.41±0.07) were determined at &lt;1 % RH and 30 % RH respectively, showing a strong water dependence. It has been possible to estimate the ratio of the rate coefficient for the reaction of the Criegee biradical, CH&lt;sub&gt;2&lt;/sub&gt;OO with water compared with decomposition. This analysis suggests that the rate of reaction with water ranges between 1×10&lt;sup&gt;−12&lt;/sup&gt;–1×10&lt;sup&gt;−15&lt;/sup&gt; cm&lt;sup&gt;3&lt;/sup&gt; molecule&lt;sup&gt;−1&lt;/sup&gt; s&lt;sup&gt;−1&lt;/sup&gt; and will therefore dominate its loss with respect to bimolecular processes in the atmosphere. Global model integrations suggest that this reaction between CH&lt;sub&gt;2&lt;/sub&gt;OO and water may dominate the production of HC(O)OH in the atmosphere

    Quantifying the impact of BOReal forest fires on Tropospheric oxidants over the Atlantic using Aircraft and Satellites (BORTAS) experiment: design, execution and science overview

    Get PDF
    We describe the design and execution of the BORTAS (Quantifying the impact of BOReal forest fires on Tropospheric oxidants over the Atlantic using Aircraft and Satellites) experiment, which has the overarching objective of understanding the chemical aging of air masses that contain the emission products from seasonal boreal wildfires and how these air masses subsequently impact downwind atmospheric composition. The central focus of the experiment was a two-week deployment of the UK BAe-146-301 Atmospheric Research Aircraft (ARA) over eastern Canada, based out of Halifax, Nova Scotia. Atmospheric ground-based and sonde measurements over Canada and the Azores associated with the planned July 2010 deployment of the ARA, which was postponed by 12 months due to UK-based flights related to the dispersal of material emitted by the Eyjafjallajökull volcano, went ahead and constituted phase A of the experiment. Phase B of BORTAS in July 2011 involved the same atmospheric measurements, but included the ARA, special satellite observations and a more comprehensive ground-based measurement suite. The high-frequency aircraft data provided a comprehensive chemical snapshot of pyrogenic plumes from wildfires, corresponding to photochemical (and physical) ages ranging from 45 sr 10 days, largely by virtue of widespread fires over Northwestern Ontario. Airborne measurements reported a large number of emitted gases including semi-volatile species, some of which have not been been previously reported in pyrogenic plumes, with the corresponding emission ratios agreeing with previous work for common gases. Analysis of the NOy data shows evidence of net ozone production in pyrogenic plumes, controlled by aerosol abundance, which increases as a function of photochemical age. The coordinated ground-based and sonde data provided detailed but spatially limited information that put the aircraft data into context of the longer burning season in the boundary layer. Ground-based measurements of particulate matter smaller than 2.5 μm (PM2.5) over Halifax show that forest fires can on an episodic basis represent a substantial contribution to total surface PM2.5

    The formation, properties and impact of secondary organic aerosol: current and emerging issues

    Get PDF
    Secondary organic aerosol (SOA) accounts for a significant fraction of ambient tropospheric aerosol and a detailed knowledge of the formation, properties and transformation of SOA is therefore required to evaluate its impact on atmospheric processes, climate and human health. The chemical and physical processes associated with SOA formation are complex and varied, and, despite considerable progress in recent years, a quantitative and predictive understanding of SOA formation does not exist and therefore represents a major research challenge in atmospheric science. This review begins with an update on the current state of knowledge on the global SOA budget and is followed by an overview of the atmospheric degradation mechanisms for SOA precursors, gas-particle partitioning theory and the analytical techniques used to determine the chemical composition of SOA. A survey of recent laboratory, field and modeling studies is also presented. The following topical and emerging issues are highlighted and discussed in detail: molecular characterization of biogenic SOA constituents, condensed phase reactions and oligomerization, the interaction of atmospheric organic components with sulfuric acid, the chemical and photochemical processing of organics in the atmospheric aqueous phase, aerosol formation from real plant emissions, interaction of atmospheric organic components with water, thermodynamics and mixtures in atmospheric models. Finally, the major challenges ahead in laboratory, field and modeling studies of SOA are discussed and recommendations for future research directions are proposed

    Estimation of mechanistic parameters in the gas-phase reactions of ozone with alkenes for use in automated mechanism construction

    Get PDF
    Reaction with ozone is an important atmospheric removal process for alkenes. The ozonolysis reaction produces carbonyls and carbonyl oxides (Criegee intermediates, CI), which can rapidly decompose to yield a range of closed shell and radical products, including OH radicals. Consequently, it is essential to accurately represent the complex chemistry of Criegee intermediates in atmospheric models in order to fully understand the impact of alkene ozonolysis on atmospheric composition. A mechanism construction protocol is presented which is suitable for use in automatic mechanism generation. The protocol defines the critical parameters for describing the chemistry following the initial reaction, namely the primary carbonyl/CI yields from the primary ozonide fragmentation, the amount of stabilisation of the excited CI, the unimolecular decomposition pathways, rates and products of the CI, and the bimolecular rates and products of atmospherically important reactions of the stabilised CI (SCI). This analysis implicitly predicts the yield of OH from the alkene–ozone reaction. A comprehensive database of experimental OH, SCI and carbonyl yields has been collated using reported values in the literature and used to assess the reliability of the protocol. The protocol provides estimates of OH, SCI and carbonyl yields with root mean square errors of 0.13 and 0.12 and 0.14, respectively. Areas where new experimental and theoretical data would improve the protocol and its assessment are identified and discussed

    Affective stimulus properties influence size perception and the Ebbinghaus illusion

    Get PDF
    In the New Look literature of the 1950s, it has been suggested that size judgments are dependent on the affective content of stimuli. This suggestion, however, has been ‘discredited’ due to contradictory findings and methodological problems. In the present study, we revisited this forgotten issue in two experiments. The first experiment investigated the influence of affective content on size perception by examining judgments of the size of target circles with and without affectively loaded (i.e., positive, neutral, and negative) pictures. Circles with a picture were estimated to be smaller than circles without a picture, and circles with a negative picture were estimated to be larger than circles with a positive or a neutral picture confirming the suggestion from the 1950s that size perception is influenced by affective content, an effect notably confined to negatively loaded stimuli. In a second experiment, we examined whether affective content influenced the Ebbinghaus illusion. Participants judged the size of a target circle whereby target and flanker circles differed in affective loading. The results replicated the first experiment. Additionally, the Ebbinghaus illusion was shown to be weakest for a negatively loaded target with positively loaded and blank flankers. A plausible explanation for both sets of experimental findings is that negatively loaded stimuli are more attention demanding than positively loaded or neutral stimuli

    Mineral-scale variation in the trace metal and sulfur isotope composition of pyrite: implications for metal and sulfur sources in mafic VMS deposits

    Get PDF
    The link between metal enrichment and the addition of a magmatic volatile phase in volcanogenic massive sulfide deposits and actively forming seafloor massive sulfide deposits remains poorly characterized. This is especially true when considering how metal, sulfur and fluid flux change with time. In this study, we combine in situ sulfur isotope (δ34S; n = 31) measurements with trace metal chemistry of pyrite (n = 143) from the Mala VMS deposit, Troodos, Cyprus. The aim of our study is to assess the links between volatile influx and metal enrichment and establish how, or indeed if, this is preserved at the scale of individual mineral grains. We classify pyrite based on texture into colloform, granular, disseminated and massive varieties. The trace metal content of different pyrite textures is highly variable and relates to fluid temperature and secondary reworking that are influenced by the location of the sample within the mound. The sulfur isotope composition of pyrite at Mala ranges from − 17.1 to 7.5‰ (n = 31), with a range of − 10.9 to 2.5‰ within a single pyrite crystal. This variation is attributed to changes in the relative proportion of sulfur sourced from (i) SO2 disproportionation, (ii) thermochemical sulfate reduction, (iii) the leaching of igneous sulfur/sulfide and (iv) bacterial sulfate reduction. Our data shows that there is no correlation between δ34S values and the concentration of volatile elements (Te, Se) and Au in pyrite at Mala indicating that remobilization of trace metals occurred within the mound

    Contemplating an evolutionary approach to entrepreneurship

    Get PDF
    This paper explores that application of evolutionary approaches to the study of entrepreneurship. It is argued an evolutionary theory of entrepreneurship must give as much concern to the foundations of evolutionary thought as it does the nature entrepreneurship. The central point being that we must move beyond a debate or preference of the natural selection and adaptationist viewpoints. Only then can the interrelationships between individuals, firms, populations and the environments within which they interact be better appreciated
    corecore